Read More
Date: 16-6-2021
1497
Date: 2-8-2021
1096
Date: 9-8-2021
2126
|
The rank of a vector bundle is the dimension of its fiber. Equivalently, it is the maximum number of linearly independent local bundle sections in a trivialization. Naturally, the dimension here is measured in the appropriate category. For instance, a real line bundle has fibers isomorphic with , and a complex line bundle has fibers isomorphic to , but in both cases their rank is 1.
The rank of the tangent bundle of a real manifold is equal to the dimension of . The rank of a trivial bundle is equal to . There is no upper bound to the rank of a vector bundle over a fixed manifold .
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|