المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الصحافة الأدبية في دول المغرب العربي
2024-11-24
الصحافة الأدبية العربية
2024-11-24
الصحافة الأدبية في أوروبا وأمريكا
2024-11-24
صحف النقابات المهنية
2024-11-24
السبانخ Spinach (من الزراعة الى الحصاد)
2024-11-24
الصحافة العمالية
2024-11-24

دعاء الإمام الصادق (عليه السلام) عند الشدائد.
2023-05-18
لهو المؤمن
2023-03-28
مرض عفن الرقبة في البصل
23-6-2016
ابتغاؤه لمرضاة الله
11-4-2016
فضل سورة البروج وخواصها
30-04-2015
عناصر البيئة
9-7-2018

Bundle Rank  
  
1373   04:02 مساءً   date: 23-5-2021
Author : المرجع الالكتروني للمعلوماتيه
Book or Source : www.almerja.com
Page and Part : ...


Read More
Date: 31-5-2021 3831
Date: 14-6-2021 3313
Date: 11-7-2021 1566

Bundle Rank

The rank of a vector bundle is the dimension of its fiber. Equivalently, it is the maximum number of linearly independent local bundle sections in a trivialization. Naturally, the dimension here is measured in the appropriate category. For instance, a real line bundle has fibers isomorphic with R, and a complex line bundle has fibers isomorphic to C, but in both cases their rank is 1.

The rank of the tangent bundle of a real manifold M is equal to the dimension of M. The rank of a trivial bundle M×R^k is equal to k. There is no upper bound to the rank of a vector bundle over a fixed manifold M.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.