النبات
مواضيع عامة في علم النبات
الجذور - السيقان - الأوراق
النباتات الوعائية واللاوعائية
البذور (مغطاة البذور - عاريات البذور)
الطحالب
النباتات الطبية
الحيوان
مواضيع عامة في علم الحيوان
علم التشريح
التنوع الإحيائي
البايلوجيا الخلوية
الأحياء المجهرية
البكتيريا
الفطريات
الطفيليات
الفايروسات
علم الأمراض
الاورام
الامراض الوراثية
الامراض المناعية
الامراض المدارية
اضطرابات الدورة الدموية
مواضيع عامة في علم الامراض
الحشرات
التقانة الإحيائية
مواضيع عامة في التقانة الإحيائية
التقنية الحيوية المكروبية
التقنية الحيوية والميكروبات
الفعاليات الحيوية
وراثة الاحياء المجهرية
تصنيف الاحياء المجهرية
الاحياء المجهرية في الطبيعة
أيض الاجهاد
التقنية الحيوية والبيئة
التقنية الحيوية والطب
التقنية الحيوية والزراعة
التقنية الحيوية والصناعة
التقنية الحيوية والطاقة
البحار والطحالب الصغيرة
عزل البروتين
هندسة الجينات
التقنية الحياتية النانوية
مفاهيم التقنية الحيوية النانوية
التراكيب النانوية والمجاهر المستخدمة في رؤيتها
تصنيع وتخليق المواد النانوية
تطبيقات التقنية النانوية والحيوية النانوية
الرقائق والمتحسسات الحيوية
المصفوفات المجهرية وحاسوب الدنا
اللقاحات
البيئة والتلوث
علم الأجنة
اعضاء التكاثر وتشكل الاعراس
الاخصاب
التشطر
العصيبة وتشكل الجسيدات
تشكل اللواحق الجنينية
تكون المعيدة وظهور الطبقات الجنينية
مقدمة لعلم الاجنة
الأحياء الجزيئي
مواضيع عامة في الاحياء الجزيئي
علم وظائف الأعضاء
الغدد
مواضيع عامة في الغدد
الغدد الصم و هرموناتها
الجسم تحت السريري
الغدة النخامية
الغدة الكظرية
الغدة التناسلية
الغدة الدرقية والجار الدرقية
الغدة البنكرياسية
الغدة الصنوبرية
مواضيع عامة في علم وظائف الاعضاء
الخلية الحيوانية
الجهاز العصبي
أعضاء الحس
الجهاز العضلي
السوائل الجسمية
الجهاز الدوري والليمف
الجهاز التنفسي
الجهاز الهضمي
الجهاز البولي
المضادات الحيوية
مواضيع عامة في المضادات الحيوية
مضادات البكتيريا
مضادات الفطريات
مضادات الطفيليات
مضادات الفايروسات
علم الخلية
الوراثة
الأحياء العامة
المناعة
التحليلات المرضية
الكيمياء الحيوية
مواضيع متنوعة أخرى
الانزيمات
Introduction to The Content of the Genome
المؤلف:
JOCELYN E. KREBS, ELLIOTT S. GOLDSTEIN and STEPHEN T. KILPATRICK
المصدر:
LEWIN’S GENES XII
الجزء والصفحة:
9-3-2021
1620
Introduction to The Content of the Genome
One key question about any genome is how many genes it contains. However, there’s an even more fundamental question: “What is a gene?” Clearly, genes cannot be defined solely as a sequence of DNA that encodes a polypeptide, because manygenes encode multiple polypeptides and many encode RNAs that serve other functions. Given the variety of RNA functions and the complexities of gene expression, it seems prudent to focus on the gene as a unit of transcription. However, large areas of chromosomes previously thought to be devoid of genes now appear to be extensively transcribed, so at present the definition of a “gene” is a moving target.
We can attempt to characterize both the total number of genes and the number of protein-coding genes at four levels, which correspond to successive stages in gene expression: The genome is the complete set of genes of an organism. Ultimately, it is defined by the complete DNA sequence, although as a practical matter it might not be possible to identify every gene unequivocally solely on the basis of sequence.
The transcriptome is the complete set of genes expressed under particular conditions. It is defined in terms of the set of RNA molecules present in a single cell type, a more complex assembly of cells, or a complete organism. Because some genes generate multiple messenger RNAs (mRNAs), the transcriptome is likely to be larger than the actual number of genes in the genome. The transcriptome includes noncoding RNAs such as transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), microRNAs (miRNAs), and others , as well as mRNAs.
The proteome is the complete set of polypeptides encoded by the whole genome or produced in any particular cell or tissue. It should correspond to the mRNAs in the transcriptome, although
there can be differences of detail reflecting changes in the relative abundance or stabilities of mRNAs and proteins. There might also be posttranslational modifications to proteins that allow more than one protein to be produced from a single transcript (this is called protein splicing ).
Proteins can function independently or as part of multiprotein or multimolecular complexes, such as holoenzymes and metabolic pathways where enzymes are clustered together. The RNA polymerase holoenzyme and the spliceosome are two examples. If we could identify all protein–protein interactions, we could define the total number of independent complexes of proteins. This is sometimes referred to as the interactome.
The maximum number of polypeptide-encoding genes in the genome can be identified directly by characterizing open reading frames (ORFs). Large-scale analysis of this nature is complicated by the fact that interrupted genes might consist of many separated ORFs, and alternative splicing can result in the use of variously combined portions of these ORFs. We do not necessarily have information about the functions of the polypeptide products—or indeed proof that they are expressed at all—so this approach is restricted to defining the potential of the genome. However, it is presumed that any conserved ORF is likely to be expressed.
Another approach is to define the number of genes directly in terms of the transcriptome (by directly identifying all the RNAs) or proteome (by directly identifying all the polypeptides). This gives an assurance that we are dealing with bona fide genes that are expressed under known circumstances. It allows us to ask how many genes are expressed in a particular tissue or cell type, what variation exists in the relative levels of expression, and how many of the genes expressed in one particular cell are unique to that cell or are also expressed elsewhere. In addition, analysis of the transcriptome can reveal how many different mRNAs (e.g., mRNAs containing different combinations of exons) are generated from a particular gene.
Also, we might ask whether a particular gene is essential: What is the phenotypic effect of a null mutation in that gene? If a null mutation is or the organism has a clear defect, we can conclude that the gene is essential or at least beneficial. However, the functions of some genes can be eliminated without apparent effect on the phenotype. Are these genes really dispensable, or does a selective disadvantage result from the absence of the gene, perhaps in other circumstances or over longer periods of time? In some cases, the absence of the functions of these genes could be offset by a redundant mechanism, such as a gene duplication, providing a backup for an essential function.
الاكثر قراءة في مواضيع عامة في الاحياء الجزيئي
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
