تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Clean Tile Problem
المؤلف:
Buffon, G.
المصدر:
"Essai d,arithmétique morale." Histoire naturelle, générale er particulière, Supplément 4
الجزء والصفحة:
...
8-3-2021
1772
Clean Tile Problem
Clean tile is a game investigated by Buffon (1777) in which players bet on the number of different tiles a thrown coin will partially cover on a floor that is regularly tiled. Buffon investigated the probabilities on a triangular grid, square grid, hexagonal grid, and grid composed of rhombi. Assume that the side length of the tile is greater than the coin diameter
. Then, on a square grid, it is possible for a coin to land so that it partially covers 1, 2, 3, or 4 tiles. On a triangular grid, it can land on 1, 2, 3, 4, or 6 tiles. On a hexagonal grid, it can land on 1, 2, or 3 tiles.
Special cases of this game give the Buffon-Laplace needle problem (for a square grid) and Buffon's needle problem (for infinite equally spaced parallel lines).
![]() |
![]() |
As shown in the figure above, on a square grid with tile edge length , the probability that a coin of diameter
will lie entirely on a single tile (indicated by yellow disks in the figure) is given by
![]() |
(1) |
since the shortening of the side of a square obtained by insetting from a square of side length by the radius of the coin
is given by
![]() |
(2) |
The probability that it will lie on two or more (indicated by red disks) is just
![]() |
(3) |
For the game to be fair with two players betting on (1) a single tile or (2) two or more tiles, these quantities must be equal, which gives
![]() |
(4) |
The probability of landing on exactly two tiles is the ratio of shaded area in the above figure to the tile size, namely
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
On a square grid, the probability of a coin landing on exactly three tiles is the fraction of a tile covered by the region illustrated in the figure above,
![]() |
(7) |
Similarly, the probability of a coin landing on four tiles is the fraction of a tile covered by a disk, as illustrated in the figure above,
![]() |
(8) |
![]() |
![]() |
As shown in the figure above, on a triangular grid with tile edge length , the probability that a coin of diameter
will lie entirely on a single tile is given by
![]() |
(9) |
since the shortening of the side of an equilateral triangle obtained by insetting from a triangle of side length by the radius of the coin
is
![]() |
(10) |
The probability that it will lie on two or more is just
![]() |
(11) |
For the game to be fair with two players betting on (1) a single tile or (2) two or more tiles, these quantities must be equal, which gives
![]() |
(12) |
As shown in the figure above, on a hexagonal grid with tile edge length , the probability that a coin of diameter
will lie entirely on a single tile is given by
![]() |
(13) |
since the shortening of the side of a regular hexagon obtained by insetting from a triangle of side length by the radius of the coin
is
![]() |
(14) |
The probability that it will lie on two or more is just
![]() |
(15) |
For the game to be fair with two players betting on (1) a single tile or (2) two or more tiles, these quantities must be equal, which gives
![]() |
(16) |
In a quadrilateral tiling formed by rhombi with opening angle , insetting from a rhombus of side length
gives
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
so
![]() |
(19) |
Therefore, the probability that a coin will lie on a single tile is
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
The probability that it will lie on two or more is just
![]() |
(22) |
For the game to be fair with two players betting on (1) a single tile or (2) two or more tiles, these quantities must be equal, which gives
![]() |
(23) |
As expected, this reduces to the square case for .
REFERENCES:
Buffon, G. "Essai d'arithmétique morale." Histoire naturelle, générale er particulière, Supplément 4, 46-123, 1777.
Mathai, A. M. "The Clean Tile Problem." §1.1.1 in An Introduction to Geometrical Probability: Distributional Aspects with Applications. Taylor & Francis: pp. 2-5, 1999.
Solomon, H. Geometric Probability. Philadelphia, PA: SIAM, 1978.
الاكثر قراءة في الاحتمالات و الاحصاء
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
