تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Quantile
المؤلف:
Barnett, V.
المصدر:
"Probability Plotting Methods and Order Statistics." Appl. Stat. 24
الجزء والصفحة:
...
9-2-2021
3222
Quantile
The word quantile has no fewer than two distinct meanings in probability. Specific elements in the range of a variate
are called quantiles, and denoted
(Evans et al. 2000, p. 5). This particular meaning has close ties to the so-called quantile function, a function which assigns to each probability
attained by a certain probability density function
a value
defined by
(1) |
The th
-tile
is that value of
, say
, which corresponds to a cumulative frequency of
(Kenney and Keeping 1962). If
, the quantity is called a quartile, and if
, it is called a percentile.
A parametrized version of quantile is implemented as Quantile[list, q, {" src="https://mathworld.wolfram.com/images/equations/Quantile/Inline15.gif" style="height:15px; width:5px" />
{" src="https://mathworld.wolfram.com/images/equations/Quantile/Inline16.gif" style="height:15px; width:5px" />a, b
}" src="https://mathworld.wolfram.com/images/equations/Quantile/Inline17.gif" style="height:15px; width:5px" />,
{" src="https://mathworld.wolfram.com/images/equations/Quantile/Inline18.gif" style="height:15px; width:5px" />c, d
}" src="https://mathworld.wolfram.com/images/equations/Quantile/Inline19.gif" style="height:15px; width:5px" />
}" src="https://mathworld.wolfram.com/images/equations/Quantile/Inline20.gif" style="height:15px; width:5px" />], which returns
![]() |
(2) |
where is the
th order statistic,
is the floor function,
is the ceiling function,
is the fractional part, and
![]() |
(3) |
There are a number of slightly different definitions of the quantile that are in common use, as summarized in the following table.
# | ![]() |
![]() |
![]() |
![]() |
plotting position | description |
Q1 | 0 | 0 | 1 | 0 | ![]() |
inverted empirical CDF |
Q2 | -- | -- | -- | -- | ![]() |
inverted empirical CDF with averaging |
Q3 | ![]() |
0 | 0 | 0 | ![]() |
observation numberer closest to ![]() |
Q4 | 0 | 0 | 0 | 1 | ![]() |
California Department of Public Works method |
Q5 | ![]() |
0 | 0 | 1 | ![]() |
Hazen's model (popular in hydrology) |
Q6 | 0 | 1 | 0 | 1 | ![]() |
Weibull quantile |
Q7 | 1 | ![]() |
0 | 1 | ![]() |
interpolation points divide sample range into ![]() |
Q8 | ![]() |
![]() |
0 | 1 | ![]() |
unbiased median |
Q9 | ![]() |
![]() |
0 | 1 | ![]() |
approximate unbiased estimate for a normal distribution |
The Wolfram Language's parametrization can handle all of these but Q2. In Q1, the empirical distribution function is the estimated cumulative proportion of the data set that does not exceed any specified value. Q2 is essentially the same as Q1 except that averages are taken at points of discontinuity. In Q3, the th quantile is the observation numbered closest to
, where
is the sample size. In Q4, the interpolation points divide the sample range into
intervals. In Q6, the vertices divide the sample into
regions, each with probability
on average. It was proposed by Weibull in 1939, and plots
at the mean position. Q7 divides the range into
intervals, of which exactly
lie to the left of
. Q8 plots
at the median position. Q9 is used in quantile-quantile plots. If
is the normal distribution and
is the plotting position of
, then
is an approximately unbiased estimate of
.
REFERENCES:
Barnett, V. "Probability Plotting Methods and Order Statistics." Appl. Stat. 24, 95-108, 1975.
Cunnane, C. "Unbiased Plotting Positions--A Review." J. Hydrology 37, 205-222, 1978.
Evans, M.; Hastings, N.; and Peacock, B. Statistical Distributions, 3rd ed. New York: Wiley, 2000.
Harter, H. L. "Another Look at Plotting Positions." Comm. Stat., Th. and Methods 13, 1613-1633, 1984.
Hyndman, R. J. and Fan, Y. "Sample Quantiles in Statistical Packages." Amer. Stat. 50, 361-365, 1996.
Kenney, J. F. and Keeping, E. S. "Quantiles." §3.5 in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, pp. 37-38, 1962.
الاكثر قراءة في الاحتمالات و الاحصاء
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
