Read More
Date: 17-11-2020
1462
Date: 17-11-2020
2950
Date: 1-7-2017
1256
|
All liquids share some other properties as well. Surface tension is an effect caused by an imbalance of forces on the atoms at the surface of a liquid, as shown in Figure 1.1 “Surface Tension”. The blue particle in the bulk of the liquid experiences intermolecular forces from all around, as illustrated by the arrows. However, the yellow particle on the surface does not experience any forces above it because there are no particles above it. This leads to an imbalance of forces that we call surface tension.
Figure 1.1 Surface Tension
Surface tension comes from the fact that particles at the surface of a liquid do not experience interactions from all directions, leading to an imbalance of forces on the surface.
Figure 1.2 Effects of Surface Tension
Water on the surface of this apple beads up due to the effect of surface tension.
Source: “wet apple” by cristian ruberti is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Generic.
Surface tension is responsible for several well-known behaviours of liquids, including water. Liquids with high surface tension tend to bead up when present in small amounts (Figure 1.2 “Effects of Surface Tension”). Surface tension causes liquids to form spheres in free fall or zero gravity (see Figure 10.3 “Liquids and Gravity”: the “floating” water isn’t in the shape of a sphere by accident; it is the result of surface tension). Surface tension is also responsible for the fact that small insects can “walk” on water. Because of surface tension, it takes energy to break the surface of a liquid, and if an object (such as an insect) is light enough, there is not enough force due to gravity for the object to break through the surface, so the object stays on top of the water (Figure 1.3 “Walking on Water”). Carefully done, this phenomenon can also be illustrated with a thin razor blade or a paper clip.
Figure 1.3 Walking on Water
Small insects can actually walk on top of water because of surface tension effects.
Source: “Water Slider” by Orest Shvadchak is licensed under the Creative Commons Attribution-ShareAlike 2.0 Generic.
The fact that small droplets of water bead up on surfaces does not mean that water—or any other liquid—does not interact with other substances. Sometimes the attraction can be very strong. Adhesion is the tendency of a substance to interact with other substances because of intermolecular forces, while cohesion is the tendency of a substance to interact with itself. If cohesive forces within a liquid are stronger than adhesive forces between a liquid and another substance, then the liquid tends to keep to itself; it will bead up. However, if adhesive forces between a liquid and another substance are stronger than cohesive forces, then the liquid will spread out over the other substance, trying to maximize the interface between the other substance and the liquid. We say that the liquid wets the other substance.
Adhesion and cohesion are important for other phenomena as well. In particular, if adhesive forces are strong, then when a liquid is introduced to a small-diameter tube of another substance, the liquid moves up or down in the tube, as if ignoring gravity. Because tiny tubes are called capillaries, this phenomenon is called capillary action. For example, one type of capillary action—capillary rise—is seen when water or water-based liquids rise up in thin glass tubes (like the capillaries sometimes used in blood tests), forming an upwardly curved surface called a meniscus. Capillary action is also responsible for the “wicking” effect that towels and sponges use to dry wet objects; the matting of fibres forms tiny capillaries that have good adhesion with water. Cotton is a good material for this; polyester and other synthetic fabrics do not display similar capillary action, which is why you seldom find rayon bath towels. A similar effect is observed with liquid fuels or melted wax and their wicks. Capillary action is thought to be at least partially responsible for transporting water from the roots to the tops of trees, even tall ones.
On the other hand, some liquids have stronger cohesive forces than adhesive forces. In this case, in the presence of a capillary, the liquid is forced down from its surface; this is an example of a type of capillary action called capillary depression. In this case, the meniscus curves downward. Mercury has very strong cohesive forces; when a capillary is placed in a pool of mercury, the surface of the mercury liquid is depressed (Figure 1.4 “Capillary Action”).
Figure 1.4 Capillary Action
(a) Capillary rise is seen when adhesion is strong, such as with water in a thin glass tube. (b) Capillary depression is seen when cohesive forces are stronger than adhesive forces, such as with mercury and thin glass tubes.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|