Read More
Date: 28-9-2020
![]()
Date: 8-3-2020
![]()
Date: 19-9-2020
![]() |
A finite sequence of real numbers is said to be logarithmically concave (or log-concave) if
![]() |
holds for every with
.
A logarithmically concave sequence of positive numbers is also unimodal.
If and
are two positive log-concave sequences of the same length, then
is also log-concave. In addition, if the polynomial
has all its zeros real, then the sequence
is log-concave (Levit and Mandrescu 2005).
An example of a logarithmically concave sequence is the sequence of binomial coefficients for fixed
and
.
REFERENCES:
Levit, V. E. and Mandrescu, E. "The Independence Polynomial of a Graph--A Survey." In Proceedings of the 1st International Conference on Algebraic Informatics. Held in Thessaloniki, October 20-23, 2005 (Ed. S. Bozapalidis, A. Kalampakas, and G. Rahonis). Thessaloniki, Greece: Aristotle Univ., pp. 233-254, 2005.
|
|
للعاملين في الليل.. حيلة صحية تجنبكم خطر هذا النوع من العمل
|
|
|
|
|
"ناسا" تحتفي برائد الفضاء السوفياتي يوري غاغارين
|
|
|
|
|
بمناسبة مرور 40 يومًا على رحيله الهيأة العليا لإحياء التراث تعقد ندوة ثقافية لاستذكار العلامة المحقق السيد محمد رضا الجلالي
|
|
|