المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24
من آداب التلاوة
2024-11-24
مواعيد زراعة الفجل
2024-11-24
أقسام الغنيمة
2024-11-24
سبب نزول قوله تعالى قل للذين كفروا ستغلبون وتحشرون الى جهنم
2024-11-24


Fortunate Prime  
  
689   01:42 صباحاً   date: 23-9-2020
Author : Gardner, M
Book or Source : "Patterns in Primes are a Clue to the Strong Law of Small Numbers." Sci. Amer. 243
Page and Part : ...


Read More
Date: 29-8-2020 622
Date: 1-6-2020 905
Date: 4-7-2020 602

Fortunate Prime

Consider the Euclid numbers defined by

 E_k=1+p_k#,

where p_k is the kth prime and p# is the primorial. The first few values of E_k are 3, 7, 31, 211, 2311, 30031, 510511, ... (OEIS A006862).

Now let q_k be the next prime (i.e., the smallest prime greater than E_k),

 q_k=p_(1+pi(E_k))=p_(1+pi(1+p_k#)),

where pi(n) is the prime counting function. The first few values of q_k are 5, 11, 37, 223, 2333, 30047, 510529, ... (OEIS A035345).

FortunatePrime

Then R. F. Fortune conjectured that F_k=q_k-E_k+1 is prime for all k. The first values of F_k are 3, 5, 7, 13, 23, 17, 19, 23, ... (OEIS A005235), and values of F_k up to k=100 are indeed prime (Guy 1994), a result extended to 1000 by E. W. Weisstein (Nov. 17, 2003). The indices of these primes are 2, 3, 4, 6, 9, 7, 8, 9, 12, 18, .... In numerical order with duplicates removed, the Fortunate primes are 3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61, 67, 71, 79, 89, ... (OEIS A046066).


REFERENCES:

Banderier, C. "Fortunate and Unfortunate Primes: Nearest Primes from a Prime Factorial." Dec. 18, 2000. https://algo.inria.fr/banderier/Computations/prime_factorial.html.

Gardner, M. "Patterns in Primes are a Clue to the Strong Law of Small Numbers." Sci. Amer. 243, 18-28, Dec. 1980.

Golomb, S. W. "The Evidence for Fortune's Conjecture." Math. Mag. 54, 209-210, 1981.

Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 7, 1994.

Sloane, N. J. A. Sequences A006862/M2698, A005235/M2418, A035345, and A046066 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.