Read More
Date: 6-11-2018
1312
Date: 1-4-2019
1177
Date: 10-3-2019
1154
|
The inert-pair effect refers to the empirical observation that the heavier elements of groups 13–17 often have oxidation states that are lower by 2 than the maximum predicted for their group. For example, although an oxidation state of +3 is common for group 13 elements, the heaviest element in group 13, thallium (Tl), is more likely to form compounds in which it has a +1 oxidation state. There appear to be two major reasons for the inert-pair effect: increasing ionization energies and decreasing bond strengths.
In moving down a group in the p-block, increasing ionization energies and decreasing bond strengths result in an inert-pair effect.
The ionization energies increase because filled (n − 1)d or (n − 2)f subshells are relatively poor at shielding electrons in ns orbitals. Thus the two electrons in the ns subshell experience an unusually high effective nuclear charge, so they are strongly attracted to the nucleus, reducing their participation in bonding. It is therefore substantially more difficult than expected to remove these ns2electrons, as shown in Table 1.1
by the difference between the first ionization energies of thallium and aluminum. Because Tl is less likely than Al to lose its two ns2 electrons, its most common oxidation state is +1 rather than +3.
Element | Electron Configuration | I1 (kJ/mol) | I1 + I2 + I3 (kJ/mol) | Average M–Cl Bond Energy (kJ/mol) |
---|---|---|---|---|
B | [He] 2s22p1 | 801 | 6828 | 536 |
Al | [Ne] 3s23p1 | 578 | 5139 | 494 |
Ga | [Ar] 3d104s24p1 | 579 | 5521 | 481 |
In | [Kr] 4d105s2p1 | 558 | 5083 | 439 |
Tl | [Xe] 4f145d106s2p1 | 589 | 5439 | 373 |
Source of data: John A. Dean, Lange’s Handbook of Chemistry, 15th ed. (New York: McGraw-Hill, 1999).
Going down a group, the atoms generally became larger, and the overlap between the valence orbitals of the bonded atoms decreases. Consequently, bond strengths tend to decrease down a column. As shown by the M–Cl bond energies listed in Table 1.1
, the strength of the bond between a group 13 atom and a chlorine atom decreases by more than 30% from B to Tl. Similar decreases are observed for the atoms of groups 14 and 15.
The net effect of these two factors—increasing ionization energies and decreasing bond strengths—is that in going down a group in the p-block, the additional energy released by forming two additional bonds eventually is not great enough to compensate for the additional energy required to remove the two ns2 electrons.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|