Read More
Date: 1-1-2017
![]()
Date: 29-6-2020
![]()
Date: 21-1-2018
![]() |
Due to each atom’s unique ability to lose or gain an electron, periodic trends in ionic radii are not as ubiquitous as trends in atomic radii across the periodic table. Therefore, trends must be isolated to specific groups and considered for either cations or anions.
Consider the s- and d-block elements. All metals can lose electrons and form cations. The alkali and alkali earth metals (groups 1 and 2) form cations which increase in size down each group; atomic radii behave the same way. Beginning in the d-block of the periodic table, the ionic radii of the cations do not significantly change across a period. However, the ionic radii do slightly decrease until group 12, after which the trend continues (Shannon 1976). It is important to note that metals, not including groups 1 and 2, can have different ionic states, or oxidation states, (e.g. Fe2+ or Fe3+ for iron) so caution must be employed when generalizing about trends in ionic radii across the periodic table.
All non-metals (except for the noble gases which do not form ions) form anions which become larger down a group. For non-metals, a subtle trend of decreasing ionic radii is found across a pegroup theoryriod (Shannon 1976). Anions are almost always larger than cations, although there are some exceptions (i.e. fluorides of some alkali metals).
Figure 1
|
|
لخفض ضغط الدم.. دراسة تحدد "تمارين مهمة"
|
|
|
|
|
طال انتظارها.. ميزة جديدة من "واتساب" تعزز الخصوصية
|
|
|
|
|
عوائل الشهداء: العتبة العباسية المقدسة سبّاقة في استذكار شهداء العراق عبر فعالياتها وأنشطتها المختلفة
|
|
|