Helmholtz Differential Equation--Polar Coordinates
المؤلف:
Morse, P. M. and Feshbach, H
المصدر:
Methods of Theoretical Physics, Part I. New York McGraw-Hill
الجزء والصفحة:
...
18-7-2018
1697
Helmholtz Differential Equation--Polar Coordinates
In two-dimensional polar coordinates, the Helmholtz differential equation is
 |
(1)
|
Attempt separation of variables by writing
 |
(2)
|
then the Helmholtz differential equation becomes
 |
(3)
|
Multiply both sides by
to obtain
 |
(4)
|
The solution to the second part of (4) must be periodic, so the differential equation is
 |
(5)
|
which has solutions
 |
(6)
|
Plug (5) back into (4)
 |
(7)
|
This has solution
 |
(8)
|
where
and
are Bessel functions of the first and second kinds, respectively. Combining the solutions gives the general solution
|
![F(r,theta)=sum_(m=0)^infty[A_mcos(mtheta)+B_msin(mtheta)]×[C_mJ_m(kr)+D_mY(kr)].](http://mathworld.wolfram.com/images/equations/HelmholtzDifferentialEquationPolarCoordinates/NumberedEquation9.gif)
REFERENCES:
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York McGraw-Hill, pp. 502-504, 1953.
|
الاكثر قراءة في المعادلات التفاضلية الجزئية
اخر الاخبار
اخبار العتبة العباسية المقدسة