Sturm-Liouville Equation
المؤلف:
Arfken, G
المصدر:
Sturm-Liouville Theory--Orthogonal Functions." Ch. 9 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press
الجزء والصفحة:
...
5-7-2018
2137
Sturm-Liouville Equation
A second-order ordinary differential equation
where
is a constant and
is a known function called either the density or weighting function. The solutions (with appropriate boundary conditions) of
are called eigenvalues and the corresponding
eigenfunctions. The solutions of this equation satisfy important mathematical properties under appropriate boundary conditions (Arfken 1985).
There are many approaches to solving Sturm-Liouville problems in the Wolfram Language. Probably the most straightforward approach is to use variational (or Galerkin) methods. For example, VariationalBound in the Wolfram Language package VariationalMethods` and NVariationalBound give approximate eigenvalues and eigenfunctions.
Trott (2006, pp. 337-388) outlines the inverse Sturm-Liouville problem.
REFERENCES:
Arfken, G. "Sturm-Liouville Theory--Orthogonal Functions." Ch. 9 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 497-538, 1985.
Trott, M. The Mathematica GuideBook for Symbolics. New York: Springer-Verlag, 2006. http://www.mathematicaguidebooks.org/.
الاكثر قراءة في معادلات تفاضلية
اخر الاخبار
اخبار العتبة العباسية المقدسة