تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Vijay Kumar Patodi
المؤلف:
Obituary: Vijay Kumar Patodi (1945-1976)
المصدر:
Topology 16
الجزء والصفحة:
...
13-4-2018
586
Born: 12 March 1945 in Guna, Madhya Pradesh, India
Died: 21 December 1976 in Bombay, India
Vijay Patodi attended the Government Higher Secondary School in Guna before entering Vikram University in Ujjain. After obtaining his B.Sc. degree from Vikram University, Patodi moved to Banares Hindu University were he studied for his Master's Degree in Mathematics. This was awarded in 1966 and Patodi then spent a year at the Centre for Advanced Study at the University of Bombay.
In 1967 Patodi joined the School of Mathematics of the Tata Institute of Fundamental Research in Bombay and he was to remain on the staff there until his death at the distressingly early age of 31.
Mathematical fame for Patodi came early in his career with papers of great importance coming for the work of his Ph.D. His doctoral thesis, Heat equation and the index of elliptic operators, was supervised by M S Narasimhan and S Ramanan and the degree was awarded by the University of Bombay in 1971.
Patodi's first paper Curvature and the eigenforms of the Laplace operator was part of his thesis and the contents of this paper are described in [2]:-
An analytic approach, via the heat equation yields easily a formula for the index of an elliptic operator on a compact manifold: but, the formula involves an integrand containing too many derivatives of the symbol, while from the Atiyah-Singer index theorem one would expect only two derivatives to figure. ... Patodi's first contribution was to prove that such a fantastic cancellation of higher derivatives did indeed take place.
The second paper which came from his thesis was An analytic proof of the Riemann- Roch- Hirzebruch theorem for Kaehler manifolds which extended the methods of his first paper to a much more complicated situation.
The years 1971 to 1973 were ones which Patodi spent on leave at the Institute for Advanced Study at Princeton. There he worked with M F Atiyah and made several visits to work with others in his field at various centres in the United States and England. During this time he also collaborated with R Bott and I M Singer.
On his return to Bombay and the Tata Institute in 1973 Patodi was promoted to associate professor. He was promoted to full professor in 1976 but by this time his health was very poor. He had in fact had to overcome health problems for most of his career, making his achievements the more remarkable.
Patodi's publications, in addition to the two mentioned above, include a number of joint ones with Atiyah and Singer. These papers introduce a spectral invariant of a compact Riemannian manifold. In another paper he studies the relationship between Riemannian structures and triangulations. Other work gives a combinatorial formula for Pontryagin classes.
Articles: