تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
The potential formulation of Maxwells equations
المؤلف:
Richard Fitzpatrick
المصدر:
Classical Electromagnetism
الجزء والصفحة:
p 115
3-1-2017
1664
The potential formulation of Maxwell's equations
We have seen that
and
are automatically satisfied if we write the electric and magnetic fields in terms of potentials:
(1.1)
This prescription is not unique, but we can make it unique by adopting the following conventions:
(1.2a)
(1.2b)
The above equations can be combined with Eq. (1.2a) to give
(1.3)
Let us now consider
Substitution of Eqs. (1.1) into this formula yields
(1.4)
or
(1.5)
We can now see quite clearly where the Lorentz gauge condition (1.2b) comes from. The above equation is, in general, very complicated since it involves both the vector and scalar potentials. But, if we adopt the Lorentz gauge then the last term on the right-hand side becomes zero and the equation simplifies consider- ably so that it only involves the vector potential. Thus, we find that Maxwell's equations reduce to the following:
(1.6)
This is the same equation written four times over. In steady state (i.e., ∂/∂t = 0) it reduces to Poisson's equation, which we know how to solve. With the ∂/∂t terms included it becomes a slightly more complicated equation (in fact, a driven three dimensional wave equation).