1

المرجع الالكتروني للمعلوماتية

تاريخ الفيزياء

علماء الفيزياء

الفيزياء الكلاسيكية

الميكانيك

الديناميكا الحرارية

الكهربائية والمغناطيسية

الكهربائية

المغناطيسية

الكهرومغناطيسية

علم البصريات

تاريخ علم البصريات

الضوء

مواضيع عامة في علم البصريات

الصوت

الفيزياء الحديثة

النظرية النسبية

النظرية النسبية الخاصة

النظرية النسبية العامة

مواضيع عامة في النظرية النسبية

ميكانيكا الكم

الفيزياء الذرية

الفيزياء الجزيئية

الفيزياء النووية

مواضيع عامة في الفيزياء النووية

النشاط الاشعاعي

فيزياء الحالة الصلبة

الموصلات

أشباه الموصلات

العوازل

مواضيع عامة في الفيزياء الصلبة

فيزياء الجوامد

الليزر

أنواع الليزر

بعض تطبيقات الليزر

مواضيع عامة في الليزر

علم الفلك

تاريخ وعلماء علم الفلك

الثقوب السوداء

المجموعة الشمسية

الشمس

كوكب عطارد

كوكب الزهرة

كوكب الأرض

كوكب المريخ

كوكب المشتري

كوكب زحل

كوكب أورانوس

كوكب نبتون

كوكب بلوتو

القمر

كواكب ومواضيع اخرى

مواضيع عامة في علم الفلك

النجوم

البلازما

الألكترونيات

خواص المادة

الطاقة البديلة

الطاقة الشمسية

مواضيع عامة في الطاقة البديلة

المد والجزر

فيزياء الجسيمات

الفيزياء والعلوم الأخرى

الفيزياء الكيميائية

الفيزياء الرياضية

الفيزياء الحيوية

الفيزياء العامة

مواضيع عامة في الفيزياء

تجارب فيزيائية

مصطلحات وتعاريف فيزيائية

وحدات القياس الفيزيائية

طرائف الفيزياء

مواضيع اخرى

علم الفيزياء : الفيزياء الكلاسيكية : الكهربائية والمغناطيسية : الكهربائية :

Electric scalar potential?

المؤلف:  Richard Fitzpatrick

المصدر:  Classical Electromagnetism

الجزء والصفحة:  p 104

3-1-2017

3050

Electric scalar potential?

We now have a problem. We can only write the electric field in terms of a scalar potential (i.e., E = -ϕ) provided that ˄E = 0. However, we have just found that in the presence of a changing magnetic field the curl of the electric field is non-zero. In other words, E is not, in general, a conservative field. Does this mean that we have to abandon the concept of electric scalar potential? Fortunately, no. It is still possible to define a scalar potential which is physically meaningful. Let us start from the equation

 (1.1)

which is valid for both time varying and non-time varying magnetic fields. Since the magnetic field is solenoidal we can write it as the curl of a vector potential:

 (1.2)

So, there is no problem with the vector potential in the presence of time varying fields. Let us substitute Eq. (1.2) into the field

 

We obtain

 (1.3)

which can be written

 (1.4)

We know that a curl free vector field can always be expressed as the gradient of a scalar potential, so let us write

 (1.5)

or

 (1.6)

This is a very nice equation! It tells us that the scalar potential ϕ only describes the conservative electric field generated by electric charges. The electric field induced by time varying magnetic fields is non-conservative, and is described by the magnetic vector potential.

EN

تصفح الموقع بالشكل العمودي