1

المرجع الالكتروني للمعلوماتية

تاريخ الفيزياء

علماء الفيزياء

الفيزياء الكلاسيكية

الميكانيك

الديناميكا الحرارية

الكهربائية والمغناطيسية

الكهربائية

المغناطيسية

الكهرومغناطيسية

علم البصريات

تاريخ علم البصريات

الضوء

مواضيع عامة في علم البصريات

الصوت

الفيزياء الحديثة

النظرية النسبية

النظرية النسبية الخاصة

النظرية النسبية العامة

مواضيع عامة في النظرية النسبية

ميكانيكا الكم

الفيزياء الذرية

الفيزياء الجزيئية

الفيزياء النووية

مواضيع عامة في الفيزياء النووية

النشاط الاشعاعي

فيزياء الحالة الصلبة

الموصلات

أشباه الموصلات

العوازل

مواضيع عامة في الفيزياء الصلبة

فيزياء الجوامد

الليزر

أنواع الليزر

بعض تطبيقات الليزر

مواضيع عامة في الليزر

علم الفلك

تاريخ وعلماء علم الفلك

الثقوب السوداء

المجموعة الشمسية

الشمس

كوكب عطارد

كوكب الزهرة

كوكب الأرض

كوكب المريخ

كوكب المشتري

كوكب زحل

كوكب أورانوس

كوكب نبتون

كوكب بلوتو

القمر

كواكب ومواضيع اخرى

مواضيع عامة في علم الفلك

النجوم

البلازما

الألكترونيات

خواص المادة

الطاقة البديلة

الطاقة الشمسية

مواضيع عامة في الطاقة البديلة

المد والجزر

فيزياء الجسيمات

الفيزياء والعلوم الأخرى

الفيزياء الكيميائية

الفيزياء الرياضية

الفيزياء الحيوية

الفيزياء العامة

مواضيع عامة في الفيزياء

تجارب فيزيائية

مصطلحات وتعاريف فيزيائية

وحدات القياس الفيزيائية

طرائف الفيزياء

مواضيع اخرى

علم الفيزياء : الفيزياء الكلاسيكية : الكهربائية والمغناطيسية : الكهربائية :

Amperes law

المؤلف:  Richard Fitzpatrick

المصدر:  Classical Electromagnetism

الجزء والصفحة:  p 73

2-1-2017

3143

Ampere's law

Magnetic fields, like electric fields, are completely superposable. So, if a field B1 is generated by a current I1 flowing through some circuit, and a field B2 is generated by a current I2 flowing through another circuit, then when the currents I1 and I2 flow through both circuits simultaneously the generated magnetic field is B1 + B2.

Consider two parallel wires separated by a perpendicular distance r and carrying electric currents I1 and I2, respectively. The magnetic field strength at the second wire due to the current flowing in the first wire is B = μ0I1/r. This field is orientated at right angles to the second wire, so the force per unit length exerted on the second wire is

 (1.1)

This follows from above as

which is valid for continuous wires as well as short test wires. The force acting on the second wire is directed radially inwards towards the first wire. The magnetic field strength at the first wire due to the current flowing in the second wire is B = μ0I2/r. This field is orientated at right angles to the first wire, so the force per unit length acting on the first wire is equal and opposite to that acting on the second wire, according to

.

Equation (1.1) is sometimes called ''Ampere's law" and is clearly another example of an ''action at a distance" law; i.e., if the current in the first wire is suddenly changed then the force on the second wire immediately adjusts, whilst in reality there should be a short time delay, at least as long as the propagation time for a light signal between the two wires. Clearly, Ampere's law is not strictly correct. However, as long as we restrict our investigations to steady currents it is perfectly adequate.

EN

تصفح الموقع بالشكل العمودي