1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Minimum-Cost Spanning Trees

المؤلف:  W.D. Wallis

المصدر:  Mathematics in the Real World

الجزء والصفحة:  116-118

12-2-2016

2187

The following example illustrates an application of spanning trees.

Sample Problem 1.1 Suppose an oil field contains five oil wells w1, w2, w3, w4, w5, and a depot d. It is required to build pipelines so that oil can be pumped from the wells to the depot. Oil can be relayed from one well to another, at very small cost. All the workers involved will be company employees, so the only real expense is building the pipelines. Figure 1.1a shows which pipelines are feasible to build, represented as a graph in the obvious way, with the cost (in hundreds of thousands of dollars) shown. (If there is no edge between two vertices, the cost of a direct join between them would be very high.) Which pipelines should be built?

Solution. Your first impulse might be to connect d to each well directly, as shown in Fig. 8.1b. This would cost $2,600,000. However, the cheapest solution is shown in Fig. 1.1c, and costs $1,600,000.

                Fig. 1.1 An oil pipeline problem

Once the pipelines in case (c) have been built, there is no reason to build a direct connection from d to w3. Any oil being sent from w3 to the depot can be relayed through w1. Similarly, there would be no point in building a pipeline joining w3 to w4. The conditions of the problem imply that the graph does not need to contain any cycle. However, it must be connected. So the solution is to find a spanning tree.

Moreover, the company would prefer the cheapest possible spanning tree. So we are interested in a minimum-cost spanning tree.

We shall look at an algorithm first described by Joseph Kruskal in 1956; not surprisingly, it is called Kruskal’s algorithm. Here is how it works.

First of all, select the cheapest edge in the graph. Then select the next cheapest edge. At every subsequent stage, go through the edges and delete any edge that would complete a cycle when combined with some of the edges already chosen.

Continue in this fashion. If, at any stage, there are two cheapest edges available,  choose either one. The end result will be a spanning tree, and it can be shown that this method always gives a cheapest possible tree.

Fig. 1.2 Finding a minimum-cost spanning tree

As an example, consider the graph on the left of Fig. 1.2. The cheapest edge is e f , cost 1. The next cheapest cost is 2, and we can choose any one of f g, b f or bg.  Say we select f g. For the third edge we can choose either b f or bg; whichever one is chosen, the other will no longer be available, because we need to avoid the cycle bfg. We shall select f g. There are two edges of cost 3, namely cg and dg. We shall use cg. Then dg is still available, so we choose it for the fifth edge. At cost 4, there are four choices: dg, gh, ab, and ae. Say we select dh; then gh must be eliminated.

Finally, we choose ae, and ab is no longer available. The tree is complete, and is shown in the right-hand diagram.

Sample Problem 1.2 Suppose you are in the process of using Kruskal’s algorithm to find a minimum-cost spanning tree in the graph shown. Heavy line edges are those selected so far. Which edge would you choose next?

Solution. The available edges are ab, cd, and f g. But ab is disqualified because it would complete the cycle abe. Of the two remaining, cd is cheaper, so it is chosen.

                  Fig. 1.3 An example of Kruskal’s algorithm

Sample Problem 1.3 Find a minimal spanning tree in the graph G shown in Fig. 1.3a.

Solution. We start by listing the edges in order of cost: de, cost 1; be, cost 2; c f ,  cost 3; ab, cost 4; ad, cost 5; bc and e f , each cost 6. The first edge chosen is de.

Next is be, then c f , then ab, cost 4. The next cheapest is ad, but it is not allowed because it would form the cycle abed. So we go on to either bc or e f , either may be chosen, and there are two possible solutions, both of total cost 16. They are shown in Fig. 8.3, graphs (b) and (c).

 

 

 

 

EN

تصفح الموقع بالشكل العمودي