1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Applications: Eulerization

المؤلف:  W.D. Wallis

المصدر:  Mathematics in the Real World

الجزء والصفحة:  89-90

9-2-2016

2288

Suppose a highway inspector needs to inspect the roads in your neighborhood. She needs to travel along every road, but will only need to go once along each. The obvious technique is to model the road system with a graph—in this case, vertices will represent intersections, and every road is shown as an edge—and find an Euler circuit in the graph. The same method can be used if you have to plan a route for a snow plow.

But suppose the graph contains no Euler walk. Then the highway inspector must repeat some edges of the graph in order to return to the starting point. We shall define an Eulerization of a graph G to be a graph, with a closed Euler walk, that is formed from G by duplicating some edges. A good Eulerization is one that contains the minimum number of new edges, and this minimum number is the Eulerization number eu(G) of G. For example, if two adjacent vertices have odd degree, you could add a further edge joining them. This would mean that the inspector must travel the road between them twice.

What if the two odd vertices were not adjacent? One new edge will not suffice— it would be the same as requiring that a new road be built! In most applications this is not feasible.

Sample Problem 1.1 Consider the multigraph G of Fig. 1.1. What is eu(G)?

Find an Eulerization of the road network represented by G that uses the minimum number of edges.

Solution. Look at the multigraph as shown on the left in Fig. 1.2. The black vertices have odd degree, so they need additional edges. As there are four black vertices, at least two new edges are needed; but obviously no two edges will

suffice. However, there are solutions with three added edges—two examples are shown—so eu(G) = 3.

Usually edges have a cost associated with them, and the cost of an Eulerization would equal the sum of the costs of the repeated edges. The problem of finding the cheapest Eulerization is called the Chinese Postman Problem. (The first mathematician to suggest it was Chinese, publishing in a Chinese journal, and he posed it in terms of a postman’s delivery route.)

For our purposes, we shall assume all edges are equal in cost. So we’ll assume that the best Eulerizations are the ones with the fewest added edges.

 

 

 

EN

تصفح الموقع بالشكل العمودي