1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

​Hamilton Cycles

المؤلف:  W.D. Wallis

المصدر:  Mathematics in the Real World

الجزء والصفحة:  101-102

9-2-2016

1916

Suppose a traveling salesman or tourist wants to visit the towns shown on a map.

They would wish to travel from one town to another, trying not to pass through any town twice on the trip, and usually they would wish to return to the starting point at the end of the trip. In terms of the underlying graph that represents the map, they would like to follow a cycle.

A cycle that passes through every vertex in a graph is called a Hamilton cycle and a graph with such a cycle is called Hamiltonian. The idea of such a spanning cycle was simultaneously developed by Hamilton in 1859 in a special case, and more generally by Kirkman in 1856.

A Hamilton path is a path that passes through every vertex. If you have a Hamilton cycle, you can construct a Hamilton path by deleting any one edge.

Fig. 1.1 Two sample graphs for discussing Hamilton cycles

 

Sample Problem 1.1 Consider the graph in Fig. 1.1a. Which of the following are Hamilton cycles?

(i) (a,b,e,d,c, f,a) (ii) (a,b,e,c,d,e, f,a)

(iii) (a,b,c,d,e, f,a) (iv) (a,b,c,e, f,a)

Solution. (i) and (iii) are Hamiltonian. (ii) is not; it contains a repeat of e. (iv) is not; vertex d is omitted.

At first, the problem of deciding whether a graph is Hamiltonian sounds similar to the problem of Euler circuits. However, the two problems are strikingly different in one regard. We found a very easy test for the Eulerian property, but no nice necessary and sufficient conditions are known for the existence of Hamilton cycles.

It is easy to see that the complete graphs with three or more vertices are Hamiltonian, and any ordering of the vertices gives a Hamilton cycle. We can discuss Hamiltonicity in a number of other particular cases, but there are no known theorems that characterize Hamiltonian graphs.

Suppose you want to find all Hamilton cycles in a graph with v vertices. Your first instinct might be to list all possible arrangements of v vertices and then delete those with two consecutive vertices that are not adjacent in the graph. This process can then be made more efficient by observing that the v lists a1a2 ...av−1av, a2a3 ...  ava1, ..., and ava1 ...av−2av−1 all represent the same cycle (written with a different starting point), and also avav−1 ...a2a1 is the same Hamilton cycle as a1a2 ...av−1av  (traversed in the opposite direction).

Another shortcut is available. If there is a vertex of degree 2, then any Hamilton cycle must contain the two edges touching it. If x has degree 2, and suppose its two neighbors are y and z, then xy and xz are in every Hamilton cycle. So it suffices to delete x, add an edge yz, find all Hamilton cycles in the new graph, and delete any that do not contain the edge yz. The Hamilton cycles in the original graph are then formed by inserting x between y and z.

            Fig. 1.2 Find all Hamilton cycles

 

Sample Problem 1.2 Find all Hamilton cycles in the graph F of Fig. 1.2.

Solution. The graph F has two vertices of degree 2, namely a and f . When we replace these vertices by edges bd and ce, we obtain the complete graph with vertices a,b,c,d (multiple edges can be ignored). This complete graph has three Hamilton cycles: there are six arrangements starting with b, namely bcde, bced,  bdce, bedc, bdec, becd, and the latter three are just the former three written in reverse. bcde yields a cycle that does not contain edges bd and ce. The other two give the cycles bc f eda and badc f e, so these are the two Hamilton cycles in F.

 

 

EN

تصفح الموقع بالشكل العمودي