1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : الاحتمالات و الاحصاء :

Probability Distributions

المؤلف:  W.D. Wallis

المصدر:  Mathematics in the Real World

الجزء والصفحة:  53-54

6-2-2016

2304

Suppose an event has a number of possible outcomes, and the theoretical probability of each outcome is known. This collection of data is called the probability distribution of the event. We can make a histogram of the distribution; in each case, the height of a column represents the probability that the value of the event lies in the range corresponding to the column. For example, suppose three quarters are tossed,  and the number of heads is recorded. For convenience, suppose the three quarters are labeled 1, 2 and 3. There are eight possible throws: HHH, HHT, HTH, HTT,  THH, THT, TTH, TTT, where the three letters represent the result (Head or Tail)  of the toss of coins 1, 2 and 3 in that order. Each of these throws is equally likely,  with probability 1/8, and exactly one must occur. So the probability of 0 heads is 1/8 (TTT must have occurred); one head has probability 3/8 (HTT, THT or TTH);  two and three heads have probabilities 3/8 and 1/8. The histogram is

Sample Problem1.1 Supposed a biased coin has a 40% probability of landing heads on any throw. In an experiment, the coin is tossed three times and the number of heads is recorded. Find the probability distribution of the result and draw the histogram for this probability distribution.

Solution. The probability of rolling the sequence HHH is 0.4×0.4×0.4= .064;  for HHT it is 0.6 × 0.4 × 0.4 = .096; and so on. The following table shows the probabilities, and the sum of probabilities for each number of heads:

Suppose each outcome of the event has a numerical value. Then the mean of a probability equals the expected value. If there are n possible values, x1,x2,...,xn,  and the probability of value xi is pi, then the mean is Σni=1 pixi. The mean is often denoted by µ, the Greek letter “mu” that corresponds to m.

The median is the value such that the probability of this result or a smaller one is 50%. The first and third quartiles, q1 and q3, are the 25% and 75% values respectively; for example, the probability of a result smaller than or equal to the first quartile is 25%. The interquartile range is the difference q3 − q1. All of these quantities are analogous to the corresponding ones for samples.

In many cases, the median and quartiles are most easily found by calculating the cumulative probability of the event. The cumulative probability cp(x) of a value x is the probability that the outcome will be equal to or less than that value. That is,  it is the sum of the probabilities of all outcomes with value less than or equal to x.

The cumulative probability distribution of the event is defined analogously to the probability distribution, using cumulative probabilities instead of probabilities. The first quartile is the smallest value x with cp(x) ≥ 0.25; the median and third quartile are defined similarly, with 0.5 and 0.75 replacing 0.25.

The standard deviation of a probability distribution is defined analogously to the standard deviation of a set of data. Using the same notation as we did for the mean,  the squared deviation corresponding to value xi is (xi − µ)2, and the mean squared deviation, or variance, is Σni=1 pi(xi −µ)2. The standard deviation equals the square root of the variance. It is commonly denoted σ (the lower-case Greek letter “sigma,”  which corresponds to s).

In the coin-tossing example there are finitely many outcomes, so the histogram consists of a number of vertical columns. In other cases, the outcome can take any real value in a certain range. For example, the heights of individuals in the United States can take any real-number value between the heights of the shortest and tallest individuals in the country. In that sort of case, the histogram is bounded above by a curve, the frequency curve, and below by the vertical axis. The coin -tossing example can also be seen in this way, with the frequency curve being a sequence of horizontal and vertical line segments. In any case, the probability that the value of the outcome lies between x and y is precisely the area bounded by the curve, the horizontal axis,  and the two vertical lines at values x and y.

 

 

EN

تصفح الموقع بالشكل العمودي