النبات
مواضيع عامة في علم النبات
الجذور - السيقان - الأوراق
النباتات الوعائية واللاوعائية
البذور (مغطاة البذور - عاريات البذور)
الطحالب
النباتات الطبية
الحيوان
مواضيع عامة في علم الحيوان
علم التشريح
التنوع الإحيائي
البايلوجيا الخلوية
الأحياء المجهرية
البكتيريا
الفطريات
الطفيليات
الفايروسات
علم الأمراض
الاورام
الامراض الوراثية
الامراض المناعية
الامراض المدارية
اضطرابات الدورة الدموية
مواضيع عامة في علم الامراض
الحشرات
التقانة الإحيائية
مواضيع عامة في التقانة الإحيائية
التقنية الحيوية المكروبية
التقنية الحيوية والميكروبات
الفعاليات الحيوية
وراثة الاحياء المجهرية
تصنيف الاحياء المجهرية
الاحياء المجهرية في الطبيعة
أيض الاجهاد
التقنية الحيوية والبيئة
التقنية الحيوية والطب
التقنية الحيوية والزراعة
التقنية الحيوية والصناعة
التقنية الحيوية والطاقة
البحار والطحالب الصغيرة
عزل البروتين
هندسة الجينات
التقنية الحياتية النانوية
مفاهيم التقنية الحيوية النانوية
التراكيب النانوية والمجاهر المستخدمة في رؤيتها
تصنيع وتخليق المواد النانوية
تطبيقات التقنية النانوية والحيوية النانوية
الرقائق والمتحسسات الحيوية
المصفوفات المجهرية وحاسوب الدنا
اللقاحات
البيئة والتلوث
علم الأجنة
اعضاء التكاثر وتشكل الاعراس
الاخصاب
التشطر
العصيبة وتشكل الجسيدات
تشكل اللواحق الجنينية
تكون المعيدة وظهور الطبقات الجنينية
مقدمة لعلم الاجنة
الأحياء الجزيئي
مواضيع عامة في الاحياء الجزيئي
علم وظائف الأعضاء
الغدد
مواضيع عامة في الغدد
الغدد الصم و هرموناتها
الجسم تحت السريري
الغدة النخامية
الغدة الكظرية
الغدة التناسلية
الغدة الدرقية والجار الدرقية
الغدة البنكرياسية
الغدة الصنوبرية
مواضيع عامة في علم وظائف الاعضاء
الخلية الحيوانية
الجهاز العصبي
أعضاء الحس
الجهاز العضلي
السوائل الجسمية
الجهاز الدوري والليمف
الجهاز التنفسي
الجهاز الهضمي
الجهاز البولي
المضادات الحيوية
مواضيع عامة في المضادات الحيوية
مضادات البكتيريا
مضادات الفطريات
مضادات الطفيليات
مضادات الفايروسات
علم الخلية
الوراثة
الأحياء العامة
المناعة
التحليلات المرضية
الكيمياء الحيوية
مواضيع متنوعة أخرى
الانزيمات
Megabase Sequencing
المؤلف:
Robert Schleif
المصدر:
Genetics and Molecular Biology
الجزء والصفحة:
2nd Edition , p311-313
2025-06-12
50
In addition to mapping, sequencing often provides fundamental information for further studies on a gene or gene system. The sequencing techniques described in the previous chapter are adequate for sequencing a few genes, but one area of great interest, the immune system, possesses hundreds of genes, many of unknown function. Here hundreds of thousands of nucleotides must be sequenced. Serious effort is now also going into the early steps of determining the sequence of the entire human genome. Large sequencing projects such as these require better methods, and several have been developed. The one described below eliminates the use of radioisotopes and automates the detection of the bands on gels.
A number of steps in the standard DNA sequencing procedure seriously limit data acquisition. These are obtaining the plasmids necessary for sequencing the desired region, pouring the gels, exposing and developing the autoradiograph films, and reading the information from the films. Several of these steps can be streamlined or eliminated.
Imagine the savings in the Sanger sequencing technique if each of the four dideoxynucleotides could be tagged with a unique label. Then, instead of labeling the primer or the first nucleotides synthesized, the chain terminating nucleotide would possess the label. If this were done and each of the four labels were distinguishable, the four dideoxynucleotides could be combined in the same synthesis tube and the complex mixture of the four families of oligonucleotides could be subjected to electrophoresis in the same lane of the gel. Following electrophoresis, the four families of oligonucleotides could be distinguished and the entire sequence read just as though each one occupied a unique lane on the gel.
Instead of using radioactive label, a fluorescent label is used. In order that this approach work well, the fluorescent adduct on the dideoxynucleotide must not interfere with the nucleotide’s incorporation into DNA. Furthermore, each of the four nucleotides must be modified with a different adduct, one that fluoresces at a different wavelength from the others. In addition, it is useful if the excitation spectrum of the four fluorescent molecules substantially overlap so that only one exciting wavelength is required (Fig. 1).
Fig1. Excitation and emission spectra suitable for DNA sequencing. Each of the four fluorescent groups that emits at wavelengths λ1, λ2, λ3, and λ4, would be attached to a different base.
Although the entire gel could be illuminated following electrophoresis, it is easier to monitor the passage during electrophoresis of one band after another past a point near the bottom of the gel. By measuring the color of the fluorescence passing a point near the bottom of the gel, the nucleotide terminating this particular size of oligonucleotide can be determined (Fig. 2). One after another, from one nucleotide to the next, the oligonucleotides pass the illumination point and the color of their fluorescence is determined, yielding the sequence of the DNA. Multiple lanes can be monitored simultaneously so that the sequence can be determined semiautomatically of many different samples simultaneously. Each lane of such a gel can provide the sequence of about 400 nucleotides of DNA.
Fig2. Geometry suitable for identification of fluorescent bases as they pass a point near the end of the electrophoresis gel.
The sensitivity of such a DNA sequencing approach is less than the radioactive techniques, but it is still sufficiently high that small DNA samples can be successfully used. A more serious problem than the sensitivity is the generation of useful samples to be sequenced. One approach is to generate many random clones from the desired DNA in a vector suitable for Sanger sequencing, to sequence at least the 300 nucleotides nearest to the vector DNA, and then to assemble the sequence of the region by virtue of the overlaps between various sequences. This shotgun approach yields the desired sequences if sufficient clones are available and sufficient time and effort are ex pended. In the sequencing of any sizeable amount of DNA, a pure shotgun approach is not efficient, and great effort is required to close the “statistical” gaps. When a few gaps remain, it may be easier to close them by chromosome walking than by sequencing more and more randomly chosen clones, most of which will be of regions already sequenced.
Another method of generating the necessary clones for sequencing a large region is to use a nested set of overlapping deletions. By sequencing from a site within the vector sequences with the use of an oligonucleotide that hybridizes to the vector, the first 400 or so nucleotides of each of the clones can be determined. The resulting sequences can easily be assembled to yield the sequence of the entire region.
Such a set of clones can be generated by opening a plasmid containing the cloned DNA, digesting with an exonuclease for various lengths of time, and recloning so that increasing amounts of the foreign DNA inserted in the plasmid are deleted (Fig.3).
Fig3. Generation of deletions for sequencing by exonuclease digestion. The vector is opened and digested, then a fragment is removed by cutting a second time with a restriction enzyme. This fragment is recloned and sequence is determined by using a primer to a sequence within the cloning vector adjacent to the location of the inserted fragment. By performing a series of exonuclease digestions for increasing periods, progressively larger deletions may be obtained.