x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
Linear systems
المؤلف: Richard Feynman, Robert Leighton and Matthew Sands
المصدر: The Feynman Lectures on Physics
الجزء والصفحة: Volume I, Chapter 49
2024-06-29
546
Now let us summarize the ideas discussed above, which are all aspects of what is probably the most general and wonderful principle of mathematical physics. If we have a linear system whose character is independent of the time, then the motion does not have to have any particular simplicity, and in fact may be exceedingly complex, but there are very special motions, usually a series of special motions, in which the whole pattern of motion varies exponentially with the time. For the vibrating systems that we are talking about now, the exponential is imaginary, and instead of saying “exponentially” we might prefer to say “sinusoidally” with time. However, one can be more general and say that the motions will vary exponentially with the time in very special modes, with very special shapes. The most general motion of the system can always be represented as a superposition of motions involving each of the different exponentials.
This is worth stating again for the case of sinusoidal motion: a linear system need not be moving in a purely sinusoidal motion, i.e., at a definite single frequency, but no matter how it does move, this motion can be represented as a superposition of pure sinusoidal motions. The frequency of each of these motions is a characteristic of the system, and the pattern or waveform of each motion is also a characteristic of the system. The general motion in any such system can be characterized by giving the strength and the phase of each of these modes, and adding them all together. Another way of saying this is that any linear vibrating system is equivalent to a set of independent harmonic oscillators, with the natural frequencies corresponding to the modes.
We conclude this chapter by remarking on the connection of modes with quantum mechanics. In quantum mechanics the vibrating object, or the thing that varies in space, is the amplitude of a probability function that gives the probability of finding an electron, or system of electrons, in a given configuration. This amplitude function can vary in space and time, and satisfies, in fact, a linear equation. But in quantum mechanics there is a transformation, in that what we call frequency of the probability amplitude is equal, in the classical idea, to energy. Therefore, we can translate the principle stated above to this case by taking the word frequency and replacing it with energy. It becomes something like this: a quantum-mechanical system, for example an atom, need not have a definite energy, just as a simple mechanical system does not have to have a definite frequency; but no matter how the system behaves, its behavior can always be represented as a superposition of states of definite energy. The energy of each state is a characteristic of the atom, and so is the pattern of amplitude which determines the probability of finding particles in different places. The general motion can be described by giving the amplitude of each of these different energy states. This is the origin of energy levels in quantum mechanics. Since quantum mechanics is represented by waves, in the circumstance in which the electron does not have enough energy to ultimately escape from the proton, they are confined waves. Like the confined waves of a string, there are definite frequencies for the solution of the wave equation for quantum mechanics. The quantum-mechanical interpretation is that these are definite energies. Therefore, a quantum-mechanical system, because it is represented by waves, can have definite states of fixed energy; examples are the energy levels of various atoms.