تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Ramsey,s Theorem
المؤلف:
Borwein, J. and Bailey, D
المصدر:
Mathematics by Experiment: Plausible Reasoning in the 21st Century.
الجزء والصفحة:
...
18-5-2022
1712
Ramsey's theorem is a generalization of Dilworth's lemma which states for each pair of positive integers and
there exists an integer
(known as the Ramsey number) such that any graph with
nodes contains a clique with at least
nodes or an independent set with at least
nodes.
Another statement of the theorem is that for integers , there exists a least positive integer
such that no matter how the complete graph
is two-colored, it will contain a green subgraph
or a red subgraph
.
A third statement of the theorem states that for all , there exists an
such that any complete digraph on
graph vertices contains a complete vertex-transitive subgraph of
graph vertices.
For example, and
, but
are only known to lie in the ranges
and
.
It is true that
if .
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century.
Wellesley, MA: A K Peters, pp. 33-34, 2003.
Graham, R. L.; Rothschild, B. L.; and Spencer, J. H. Ramsey Theory, 2nd ed. New York: Wiley, 1990.
Mileti, J. "Ramsey's Theorem." http://www.math.uiuc.edu/~mileti/Museum/ramsey.html.Spencer, J. "Large Numbers and Unprovable Theorems." Amer. Math. Monthly 90, 669-675, 1983.