تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Matching Polynomial
المؤلف:
Aihara, J.
المصدر:
"A New Definition of Dewar-Type Resonance Energies." J. Amer. Chem. Soc. 98
الجزء والصفحة:
...
10-5-2022
2186
Matching Polynomial
A -matching in a graph
is a set of
edges, no two of which have a vertex in common (i.e., an independent edge set of size
). Let
be the number of
-matchings in the graph
, with
and
the number of edges of
. Then the matching polynomial is defined by
(1) |
where vertex count of
(Ivanciuc and Balaban 2000, p. 92; Levit and Mandrescu 2005) and
is the matching number (which satisfies
, where
is the floor function).
The matching polynomial is also known as the acyclic polynomial (Gutman and Trinajstić 1976, Devillers and Merino 2000), matching defect polynomial (Lovász and Plummer 1986), and reference polynomial (Aihara 1976).
A more natural polynomial might be the matching-generating polynomial which directly encodes the numbers of independent edge sets of a graph and is defined by
(2) |
but is firmly established. Fortunately, the two are related by
(3) |
(Ellis-Monaghan and Merino 2008; typo corrected), so
(4) |
The matching polynomial is closely related to the independence polynomial. In particular, the matching-generating polynomial of a graph is equal to the independence polynomial of the line graph of
(Levit and Mandrescu 2005).
The matching polynomial has a nonzero coefficient (or equivalently, the matching-generating polynomial is of degree
for a graph on
nodes) iff the graph has a perfect matching.
Precomputed matching polynomials for many named graphs in terms of a variable can be obtained using GraphData[graph, "MatchingPolynomial"][x].
The following table summarizes closed forms for the matching polynomials of some common classes of graphs. Here, is a modified Hermite polynomial,
is the usual Hermite polynomial,
is a Laguerre polynomial,
is a confluent hypergeometric function of the second kind,
is a Lucas polynomial,
,
, and
.
graph | |
book graph |
|
centipede graph | |
complete graph |
|
complete bipartite graph |
|
cycle graph |
|
empty graph |
|
gear graph | |
helm graph | |
ladder rung graph |
|
pan graph | |
path graph |
|
star graph |
|
sunlet graph |
|
wheel graph |
The following table summarizes the recurrence relations for independence polynomials for some simple classes of graphs.
antiprism graph | 4 | |
book graph |
3 | |
centipede graph | 2 | |
3 | ||
cycle graph |
2 | |
gear graph | 4 | |
helm graph | 4 | |
ladder graph |
3 | |
ladder rung graph |
1 | |
Möbius ladder |
4 | |
pan graph | 2 | |
path graph |
2 | |
prism graph | 4 | |
star graph |
2 | |
sunlet graph |
2 | |
web graph | 4 | |
wheel graph |
4 |
Nonisomorphic graphs do not necessarily have distinct matching polynomials. The following table summarizes some co-matching graphs.
matching polynomial | graphs | |
4 | claw graph, |
|
5 | banner graph, 3-centipede graph | |
5 | ||
5 | butterfly graph, kite graph | |
5 | ||
5 | ||
5 | house graph, complete bipartite graph |
|
5 | cricket graph, |
|
5 | fork graph, |
For any graph , the matching polynomial
has only real zeros.
REFERENCES
Aihara, J. "A New Definition of Dewar-Type Resonance Energies." J. Amer. Chem. Soc. 98, 2750-2758, 1976.
Devillers, J. and A. T. Balaban (Eds.). Topological Indices and Related Descriptors in QSAR and QSPR. Amsterdam, Netherlands: Gordon and Breach, pp. 92-94, 2000.
Ellis-Monaghan, J. A. and Merino, C. "Graph Polynomials and Their Applications II: Interrelations and Interpretations." 28 Jun 2008. http://arxiv.org/abs/0806.4699.
Godsil, C. D. Algebraic Combinatorics. Chapman and Hall, 1993.Godsil, C. D. and Gutman, I. "On the Theory of the Matching Polynomial." J. Graph Theory 5, 137-144, 2006.
Gutman, I. "Polynomials in Graph Theory." In Chemical Graph Theory: Introduction and Fundamentals (Ed. D. Bonchev and D. H. Rouvray). New York: Abacus Press, 1991.
Gutman, I. and Trinajstić, N. "Graph Theory and Molecular Orbitals, XIV. On Topological Definition of Resonance Energy." Acta Chimica Academiae Scientiarum Hungaricae 91, 203-209, 1976.
Ivanciuc, O. and Balaban, A. T. "The Graph Description of Chemical Structures." Ch. 3 in Topological Indices and Related Descriptors in QSAR and QSPR (Ed. J. Devillers and A. T. Balaban). Amsterdam, Netherlands: Gordon and Breach, pp. 59-167, 2000.
Levit, V. E. and Mandrescu, E. "The Independence Polynomial of a Graph--A Survey." In Proceedings of the 1st International Conference on Algebraic Informatics. Held in Thessaloniki, October 20-23, 2005 (Ed. S. Bozapalidis, A. Kalampakas, and G. Rahonis). Thessaloniki, Greece: Aristotle Univ., pp. 233-254, 2005.
Lovász, L. and Plummer, M. D. Matching Theory. Amsterdam, Netherlands: North-Holland, 1986.Lundow, P. H. "Enumeration of Matchings in Polygraphs." Department of Mathematics, Umea University. Research report. 1998. http://www.theophys.kth.se/~phl/Text/1factors2.ps.gz.
Lundow, P. H. "GrafPack." http://www.theophys.kth.se/~phl/Mathematica/.Sloane, N. J. A. Sequences A046741 and A096713 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
