1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Graph Geodesic

المؤلف:  Harary, F.

المصدر:  Graph Theory. Reading, MA: Addison-Wesley

الجزء والصفحة:  ...

24-4-2022

1714

Graph Geodesic

 

GraphGeodesics

A shortest path between two graph vertices (u,v) of a graph (Skiena 1990, p. 225). There may be more than one different shortest paths, all of the same length. Graph geodesics may be found using a breadth-first traversal (Moore 1959) or using Dijkstra's algorithm (Skiena 1990, p. 225). One (of possibly several) graph geodesics of a graph g from vertex u to vertex v can be found in the Wolfram Language using FindShortestPath[guv]. The length of the graph geodesic between these points d(u,v) is called the graph distance between u and v.

The length of the maximum geodesic in a given graph is called the graph diameter, and the length of the minimum geodesic is called the graph radius.

The matrix (d_(ij)) consisting of all graph distances from vertex v_i to vertex v_j is known as the all-pairs shortest path matrix, or more simply, the graph distance matrix.

A graph which possesses a unique geodesic between every pair of vertices is known as a geodetic graph.


REFERENCES

Harary, F. Graph Theory. Reading, MA: Addison-Wesley, p. 14, 1994.

Moore, E. F. "The Shortest Path through a Maze." In Proc. Internat. Symp. Switching Th., Part II. Cambridge, MA: Harvard University Press, pp. 285-292, 1959.

Skiena, S. "Shortest Paths." §6.1 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 225-253, 1990.

EN

تصفح الموقع بالشكل العمودي