1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Graph Minor

المؤلف:  Fellows, M. R. and Langston, M. A

المصدر:  "Nonconstructive Tools for Proving Polynomial-Time Decidability." J. ACM 35

الجزء والصفحة:  ...

10-4-2022

2155

Graph Minor

A graph H is a minor of a graph G if a copy of H can be obtained from G via repeated edge deletion and/or edge contraction.

The Kuratowski reduction theorem states that any nonplanar graph has the complete graph K_5 or the complete bipartite graph K_(3,3) as a minor. In addition, any snark has the Petersen graph as a minor, as conjectured by Tutte (1967; West 2000, p. 304) and proved by Robertson et al.

The determination of graph minors is an NP-hard problem for which no good algorithms are known, although brute-force methods such as those due to Robertson, Sanders, and Thomas exist.

For any fixed graph H, it is possible to test whether H is a minor of an given graph G in polynomial time, so if a forbidden minor characterization is available, then any graph property which is preserved by deletions and contractions may be recognized in polynomial time (Fellows and Langston 1988, Robertson and Seymour 1995).

As of 2022, the plane and projective plane are the only surfaces for which a complete list of forbidden minors is known for graph embedding (Mohar and Škoda 2020).

A graph H is called a topological minor of a graph G if a graph expansion of H is isomorphic to a subgraph of G. Every topological minor is also a minor, but the converse is not necessarily true.


REFERENCES

Demaine, E. D.; Hajiaghayi, M.; and Kawarabayashi, K.-I. "Algorithmic Graph Minor Theory: Decomposition, Approximation, and Coloring." In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), Pittsburgh, PA, October 23-25, 2005. pp. 637-646.

Demaine, E. D.; Hajiaghayi, M.; and Kawarabayashi, K.-I. "Algorithmic Graph Minor Theory: Improved Grid Minor Bounds and Wagner's Contraction." In Algorithms and Computation. Proceedings of the 17th International Symposium (ISAAC 2006) held in Kolkata, December 18-20, 2006 (Ed. T. Asano). Berlin: Springer, pp. 3-15, 2006.

Fellows, M. R. and Langston, M. A. "Nonconstructive Tools for Proving Polynomial-Time Decidability." J. ACM 35, 727-739, 1988.

Mohar, B. and Škoda, P. "Excluded Minors for the Klein Bottle I. Low Connectivity Case." 1 Feb 2020.

 https://arxiv.org/abs/2002.00258.Robertson, N.; Sanders, D. P.; Seymour, P. D.; and Thomas, R. "A New Proof of the Four Colour Theorem." Electron. Res. Announc. Amer. Math. Soc. 2, 17-25, 1996.

Robertson, N.; Sanders, D. P.; and Thomas, R. "The Four-Color Theorem." http://www.math.gatech.edu/~thomas/FC/fourcolor.html.Robertson, N. and Seymour, P. D. "Graph Minors. XIII. The Disjoint Paths Problem." J. Combin. Th., Ser. B 63, 65-110, 1995.

Tutte, W. T. "A geometrical Version of the Four Color Problem." In Combinatorial Math. and Its Applications (Ed. R. C. Bose and T. A. Dowling). Chapel Hill, NC: University of North Carolina Press, 1967.West, D. B. Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 2000.

EN

تصفح الموقع بالشكل العمودي