تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Möbius Ladder
المؤلف: Biggs, N. L
المصدر: Algebraic Graph Theory, 2nd ed. Cambridge, England: Cambridge University Press
الجزء والصفحة: ...
22-3-2022
1833
A Möbius ladder, sometimes called a Möbius wheel (Jakobson and Rivin 1999), of order is a simple graph obtained by introducing a twist in a prism graph of order that is isomorphic to the circulant graph . Möbius ladders are sometimes denoted .
The 4-Möbius ladder is known as the Wagner graph. The -Möbius ladder rung graph is isomorphic to the Haar graph .
Möbius ladders are Hamiltonian, graceful (Gallian 1987, Gallian 2018), and by construction, singlecross. The Möbius ladders are also nontrivial biplanar graphs.
The numbers of directed Hamiltonian cycles for , 4, ... are 12, 10, 16, 14, 20, 18, 24, ... (OEIS A124356), given by the closed form
(1) |
The -Möbius ladder graph has independence polynomial
(2) |
Recurrence equations for the independence polynomial and matching polynomial are given by
(3) |
|||
(4) |
The bipartite double graph of the -Möbius ladder is the prism graph .
Biggs, N. L. Algebraic Graph Theory, 2nd ed. Cambridge, England: Cambridge University Press, pp. 20-21, 1993.
Gallian, J. "Labeling Prisms and Prism Related Graphs." Congr. Numer. 59, 89-100, 1987.
Gallian, J. "Dynamic Survey of Graph Labeling." Elec. J. Combin. DS6. Dec. 21, 2018.
https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6.Godsil, C. and Royle, G. Algebraic Graph Theory. New York: Springer-Verlag, pp. 118 and 131, 2001.
Hladnik, M.; Marušič, D.; and Pisanski, T. "Cyclic Haar Graphs." Disc. Math. 244, 137-153, 2002.
McSorley, J. P. "Counting Structures in the Moebius Ladder." Disc. Math. 184, 137-164, 1998.
Jakobson, D. and Rivin, I. "On Some Extremal Problems in Graph Theory." 8 Jul 1999.
http://arxiv.org/abs/math.CO/9907050.Read, R. C. and Wilson, R. J. An Atlas of Graphs. Oxford, England: Oxford University Press, pp. 263 and 270, 1998.
Sloane, N. J. A. Sequence A124356 in "The On-Line Encyclopedia of Integer Sequences."