1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Clique

المؤلف:  Harary, F

المصدر:  Graph Theory. Reading, MA: Addison-Wesley, 1994.

الجزء والصفحة:  ...

4-3-2022

2469

Clique

 

 

Clique

A clique of a graph G is a complete subgraph of G, and the clique of largest possible size is referred to as a maximum clique (which has size known as the clique number omega(G)). However, care is needed since maximum cliques are often called simply "cliques" (e.g., Harary 1994). A maximal clique is a clique that cannot be extended by including one more adjacent vertex, meaning it is not a subset of a larger clique. Maximum cliques are therefore maximal cliqued (but not necessarily vice versa).

Cliques arise in a number of areas of graph theory and combinatorics, including graph coloring and the theory of error-correcting codes.

A clique of size k is called a k-clique (though this term is also sometimes used to mean a maximal set of vertices that are at a distance no greater than k from each other). 0-cliques correspond to the empty set (sets of 0 vertices), 1-cliques correspond to vertices, 2-cliques to edges, and 3-cliques to 3-cycles.

The clique polynomial is of a graph G is defined as

 C_G(x)=sum_(k=0)^(omega(G))c_kx^k,

where c_k is the number of cliques of size k, with c_0=1c_1=|G| equal to the vertex count of Gc_2=m(G) equal to the edge count of G, etc.

In the Wolfram Language, the command FindClique[g][[1]] can be used to find a maximum clique, and FindClique[gLength /@ FindClique[g], All] to find all maximum cliques. Similarly, FindClique[gInfinity] can be used to find a maximal clique, and FindClique[gInfinityAll] to find all maximal cliques. To find all cliques, enumerate all vertex subsets s and select those for which CompleteGraphQ[gs] is true.

In general, FindClique[gn] can be used to find a maximal clique containing at least n vertices, FindClique[gnAll] to find all such cliques, FindClique[g{n}] to find a clique containing at exactly n vertices, and FindClique[g{n}All] to find all such cliques.

The numbers of cliques, equal to the clique polynomial evaluated at x=1, for various members of graph families are summarized in the table below, where the trivial 0-clique represented by the initial 1 in the clique polynomial is included in each count.

graph family OEIS number of cliques
alternating group graph A308599 X, 2, 8, 45, 301, 2281, ...
Andrásfai graph A115067 4, 11, 21, 34, 50, 69, 91, ...
n×n antelope graph A308600 2, 5, 10, 17, 34, 61, 98, ...
antiprism graph A017077 X, X, 27, 33, 41, 49, 57, 65, ...
Apollonian network A205248 16, 40, 112, 328, 976, 2920, ...
barbell graph A000079 X, X, 16, 32, 64, 128, 256, 512, ...
n×n bishop graph A183156 2, 7, 22, 59, 142, 319, ...
n×n black bishop graph A295909 2, 4, 14, 30, 82, 160, 386, ...
book graph S_(n+1) square P_2 A016897 9, 14, 19, 24, 29, 34, 39, 44, ...
Bruhat graph A139149 2, 4, 13, 61, 361, 2521, 20161, ...
centipede graph A008586 4, 8, 12, 16, 20, 24, 28, 32, 36, ...
cocktail party graph K_(n×2) A000244 3, 9, 27, 81, 243, 729, 2187, ...
complete graph K_n A000079 2, 4, 8, 16, 32, 64, 128, 256, ...
complete bipartite graph K_(n,n) A000290 4, 9, 16, 25, 36, 49, 64, 81, 100, ...
complete tripartite graph K_(n,n,n) A000578 8, 27, 64, 125, 216, 343, 512, ...
2n-crossed prism graph A017281 X, 21, 31, 41, 51, 61, 71, ...
crown graph K_2 square K_n^_ A002061 X, X, 13, 21, 31, 43, 57, 73, 91, ...
cube-connected cycle graph A295926 X, X, 69, 161, 401, 961, 2241, 5121, ...
cycle graph C_n A308602 X, X, 8, 9, 11, 13, 15, 17, 19, ...
dipyramidal graph A308603 X, X, 24, 27, 33, 39, 45, 51, 57, 63, ...
empty graph K^__n A000027 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
Fibonacci cube graph A291916 4, 6, 11, 19, 34, 60, 106, 186, ...
n×n fiveleaper graph A308604 X, 4, 16, 25, 57, 129, 289, 641, 1409, ...
folded cube graph A295921 3, 15, 24, 56, ...
gear graph A016873 X, X, 17, 22, 27, 32, 37, 42, 47, 52, ...
grid graph P_n square P_n A056105 2, 9, 22, 41, 66, 97, 134, 177, 226, 281, ...
grid graph P_n square P_n square P_n A295907 2, 21, 82, 209, 426, 757, 1226, 1857, ...
halved cube graph A295922 2, 4, 16, 81, 393, 1777, ...
Hanoi graph A295911 8, 25, 76, 229, 688, ...
helm graph A016933 X, X, 22, 26, 32, 38, 44, 50, 56, ...
hypercube graph Q_n A132750 4, 9, 21, 49, 113, 257, 577, 1281, 2817, ...
Keller graph A295902 5, 57, 14833, 2290312801, ...
n×n king graph A295906 2, 16, 50, 104, 178, 272, 386, ...
n×n knight graph A295905 2, 5, 18, 41, 74, 117, 170, 233, 306, 389, ...
ladder graph P_2 square P_n A016897 4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, ...
ladder rung graph nP_2 A016777 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, ...
Menger sponge graph A292209 45, 1073, 22977, ...
Möbius ladder M_n A016861 X, X, 16, 21, 26, 31, 36, 41, 46, 51, ...
Mycielski graph A199109 2, 4, 11, 32, 95, 284, 851, 2552, 7655, ...
odd graph O_n A295934 2, 8, 26, 106, 442, 1849, 7723, ...
pan graph A005408 X, X, 10, 11, 13, 15, 17, 19, 21, 23, ...
path graph P_n A005843 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, ...
path complement graph P^__n A000045 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
permutation star graph A139149 2, 4, 13, 61, 361, 2521, ...
polygon diagonal intersection graph A300524 X, X, 8, 18, 41, 80, 169, 250, ...
prism graph K_2 square C_n A016861 X, X, 18, 21, 26, 31, 36, 41, 46, 51, ...
n×n queen graph A295903 2, 16, 94, 293, 742, 1642, 3458, 7087, ...
rook graph K_n square K_n A288958 2, 9, 34, 105, 286, 721, 1730, ...
rook complement graph K_n square K_n^_ A002720 2, 7, 34, 209, 1546, 13327, 130922, ...
Sierpiński carpet graph A295932 17, 153, 1289, 10521, ...
Sierpiński sieve graph A295933 8, 20, 55, 160, 475, ...
Sierpiński tetrahedron graph A292537 6, 59, 227, 899, 3587, 14339, ...
star graph S_n A005843 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, ...
sun graph A295904 X, X, 20, 32, 52, 88, 156, 288, 548, ...
sunlet graph C_n circledot K_1 A016813 X, X, 14, 17, 21, 25, 29, 33, 37, 41, 45, ...
tetrahedral graph A289837 X, X, X, X, X, 261, 757, 2003, 5035, ...
torus grid graph C_n square C_n A056107 X, X, 34, 49, 76, 109, 148, 193, ...
transposition graph A308606 2, 4, 16, 97, 721, 6121, ...
triangular graph A290056 X, 2, 8, 27, 76, 192, 456, 1045, ...
triangular grid graph A242658 8, 20, 38, 62, 92, 128, 170, 218, ...
triangular snake graph TS_n A016789 2, X, 8, X, 14, X, 20, X, 26, X, 32, X, ...
web graph A016993 X, X, 24, 29, 36, 43, 50, 57, 64, 71, 78, ...
wheel graph W_n A308607 X, X, X, 16, 18, 22, 26, 30, 34, 38, 42, 46, ...
n×n white bishop graph A295910 X, 4, 9, 30, 61, 160, 301, 71, ...

Closed forms for some of these are summarized in the table below.

 

 

graph family number of cliques
Andrásfai graph 1/2(n+2)(3n-1)
antiprism graph {26   for n=3; 8n   for n>=4
book graph S_(n+1) square P_2 5n+3
cocktail party graph K_(n×2) 3^n-1
complete bipartite graph K_(n,n) 2^n-1
complete graph K_n n(n+2)
complete tripartite graph K_(n,n,n) n(n^2+3n+3)
2n-crossed prism graph 10n
cycle graph C_n {7   for n=3; 2n   for n>=4
empty graph K^__n n
gear graph 5n+11
helm graph {21   for n=3; 8n   for n>=4
hypercube graph Q_n 2^(n-1)(n+2)
ladder graph 5n-2
ladder rung graph nP_2 3n
Möbius ladder M_n 5(n+2)
pan graph {9   for n=3; 2(n+1)   for n>=4
path graph P_n 2n-1
prism graph Y_n {17   for n=3; 5n   for n>=4
star graph S_n 2n-1
sun graph 2^n+4n-1
sunlet graph C_n circledot K_1 {13   for n=3; 4n   for n>=4
web graph {23   for n=3; 7n   for n>=4
wheel graph W_n

{15   for n=3; 4n-3   for n>=4

 


REFERENCES

Harary, F. Graph Theory. Reading, MA: Addison-Wesley, 1994.

Pemmaraju, S. and Skiena, S. Computational Discrete Mathematics: Combinatorics and Graph Theory in Mathematica. Cambridge, England: Cambridge University Press, pp. 247-248, 2003.

Skiena, S. "Maximum Cliques." §5.6.1 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 215 and 217-218, 1990.

Skiena, S. S. "Clique and Independent Set" and "Clique." §6.2.3 and 8.5.1 in The Algorithm Design Manual. New York: Springer-Verlag, pp. 144 and 312-314, 1997.

 

EN

تصفح الموقع بالشكل العمودي