1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : الرياضيات المتقطعة : المنطق :

Propositional Calculus

المؤلف:  Chang, C.-L. and Lee, R. C.-T.

المصدر:  Symbolic Logic and Mechanical Theorem Proving. New York: Academic Press, 1997.

الجزء والصفحة:  ...

8-2-2022

1253

Propositional Calculus

Propositional calculus is the formal basis of logic dealing with the notion and usage of words such as "NOT," "OR," "AND," and "implies." Many systems of propositional calculus have been devised which attempt to achieve consistency, completeness, and independence of axioms. The term "sentential calculus" is sometimes used as a synonym for propositional calculus.

Axioms (or their schemata) and rules of inference define a proof theory, and various equivalent proof theories of propositional calculus can be devised. The following list of axiom schemata of propositional calculus is from Kleene (2002).

F=>(G=>F)

(1)

(F=>G)=>((F=>(G=>H))=>(F=>H))

(2)

F=>(G=>F ^ G)

(3)

F=>F v G

(4)

F=>G v F

(5)

F ^ G=>F

(6)

F ^ G=>G

(7)

(F=>G)=>((H=>G)=>(F v H=>G))

(8)

(F=>G)=>((F=>¬G)=>¬F)

(9)

¬¬F=>F.

(10)

In each schema, FGH can be replaced by any sentential formula. The following rule called Modus Ponens is the sole rule of inference:

 (F,F=>G)/G.

(11)

This rule states that if each of F and F=>G is either an axiom or a theorem formally deduced from axioms by application of inference rules, then G is also a formal theorem.

Other rules are derived from Modus Ponens and then used in formal proofs to make proofs shorter and more understandable. These rules serve to directly introduce or eliminate connectives. Modus Ponens is basically =>-elimination, and the deduction theorem is =>-introduction.

Sample introduction rules include

 (F,G)/(F ^ G),F/(G v F).

(12)

Sample elimination rules include

 (F ^ G)/G,(¬¬F)/F.

(13)

Proof theories based on Modus Ponens are called Hilbert-type whereas those based on introduction and elimination rules as postulated rules are called Gentzen-type. All formal theorems in propositional calculus are tautologies and all tautologies are formally provable. Therefore, proofs can be used to discover tautologies in propositional calculus, and truth tables can be used to discover theorems in propositional calculus.

One can formulate propositional logic using just the NAND operator. The history of that can be found in Wolfram (2002, p. 1151). The shortest such axiom is the Wolfram axiom.


REFERENCES

Chang, C.-L. and Lee, R. C.-T. Symbolic Logic and Mechanical Theorem Proving. New York: Academic Press, 1997.

Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub., pp. 254-255, 1989.

Kleene, S. C. Mathematical Logic. New York: Dover, 2002.Mendelson, E. "The Propositional Calculus." Ch. 1 in Introduction to Mathematical Logic, 4th ed. London: Chapman & Hall, pp. 12-44, 1997.

Nidditch, P. H. Propositional Calculus. New York: Free Press of Glencoe, 1962.Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, 1151, 2002.

EN

تصفح الموقع بالشكل العمودي