Equipollent
المؤلف:
Rubin, J. E
المصدر:
Set Theory for the Mathematician. New York: Holden-Day, 1967.Suppes, P. Axiomatic Set Theory. New York: Dover, 1972.
الجزء والصفحة:
...
23-1-2022
1164
Equipollent
Two statements in logic are said to be equipollent if they are deducible from each other.
Two sets
and
are said to be equipollent iff there is a one-to-one correspondence (i.e., a bijection) from
onto
(Moore 1982, p. 10; Rubin 1967, p. 67; Suppes 1972, p. 91).
The term equipotent is sometimes used instead of equipollent.
REFERENCES
Moore, G. H. Zermelo's Axiom of Choice: Its Origin, Development, and Influence. New York: Springer-Verlag, 1982.
Rubin, J. E. Set Theory for the Mathematician. New York: Holden-Day, 1967.Suppes, P. Axiomatic Set Theory. New York: Dover, 1972.
الاكثر قراءة في المنطق
اخر الاخبار
اخبار العتبة العباسية المقدسة