1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : الاحتمالات و الاحصاء :

Planck,s Radiation Function

المؤلف:  Sloane, N. J. A.

المصدر:  Sequences A133838, A133839, A133840 in "The On-Line Encyclopedia of Integer Sequences."

الجزء والصفحة:  ...

13-4-2021

1794

Planck's Radiation Function

Planck

Planck's's radiation function is the function

 f(x)=(15)/(pi^4)1/(x^5(e^(1/x)-1)),

(1)

which is normalized so that

 int_0^inftyf(x)dx=1.

(2)

However, the function is sometimes also defined without the numerical normalization factor of 15/pi^4 (e.g., Abramowitz and Stegun 1972, p. 999).

The first and second raw moments are

= (30zeta(3))/(pi^4)

(3)

= 5/(2pi^2),

(4)

where zeta(3) is Apéry's constant, but higher order raw moments do not exist since the corresponding integrals do not converge.

It has a maximum at x approx 0.201405 (OEIS A133838), where

(5)

and inflection points at x approx 0.11842 (OEIS A133839) and x approx 0.283757 (OEIS A133840), where

(6)


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). "Planck's Radiation Function." §27.2 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 999, 1972.

Sloane, N. J. A. Sequences A133838, A133839, A133840 in "The On-Line Encyclopedia of Integer Sequences."

EN

تصفح الموقع بالشكل العمودي