تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Log Normal Distribution
المؤلف:
Aitchison, J. and Brown, J. A. C.
المصدر:
The Lognormal Distribution, with Special Reference to Its Use in Economics. New York: Cambridge University Press, 1957.
الجزء والصفحة:
...
8-4-2021
2004
A continuous distribution in which the logarithm of a variable has a normal distribution. It is a general case of Gibrat's distribution, to which the log normal distribution reduces with and
. A log normal distribution results if the variable is the product of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the sum of a large number of independent, identically-distributed variables.
The probability density and cumulative distribution functions for the log normal distribution are
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
where is the erf function.
It is implemented in the Wolfram Language as LogNormalDistribution[mu, sigma].
This distribution is normalized, since letting gives
and
, so
![]() |
(3) |
The raw moments are
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
and the central moments are
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
Therefore, the mean, variance, skewness, and kurtosis excess are given by
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
These can be found by direct integration
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
and similarly for .
Examples of variates which have approximately log normal distributions include the size of silver particles in a photographic emulsion, the survival time of bacteria in disinfectants, the weight and blood pressure of humans, and the number of words written in sentences by George Bernard Shaw.
REFERENCES:
Aitchison, J. and Brown, J. A. C. The Lognormal Distribution, with Special Reference to Its Use in Economics. New York: Cambridge University Press, 1957.
Balakrishnan, N. and Chen, W. W. S. Handbook of Tables for Order Statistics from Lognormal Distributions with Applications. Amsterdam, Netherlands: Kluwer, 1999.
Crow, E. L. and Shimizu, K. (Ed.). Lognormal Distributions:Theory and Applications. New York: Dekker, 1988.
Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, p. 123, 1951.