1

المرجع الالكتروني للمعلوماتية

تاريخ الفيزياء

علماء الفيزياء

الفيزياء الكلاسيكية

الميكانيك

الديناميكا الحرارية

الكهربائية والمغناطيسية

الكهربائية

المغناطيسية

الكهرومغناطيسية

علم البصريات

تاريخ علم البصريات

الضوء

مواضيع عامة في علم البصريات

الصوت

الفيزياء الحديثة

النظرية النسبية

النظرية النسبية الخاصة

النظرية النسبية العامة

مواضيع عامة في النظرية النسبية

ميكانيكا الكم

الفيزياء الذرية

الفيزياء الجزيئية

الفيزياء النووية

مواضيع عامة في الفيزياء النووية

النشاط الاشعاعي

فيزياء الحالة الصلبة

الموصلات

أشباه الموصلات

العوازل

مواضيع عامة في الفيزياء الصلبة

فيزياء الجوامد

الليزر

أنواع الليزر

بعض تطبيقات الليزر

مواضيع عامة في الليزر

علم الفلك

تاريخ وعلماء علم الفلك

الثقوب السوداء

المجموعة الشمسية

الشمس

كوكب عطارد

كوكب الزهرة

كوكب الأرض

كوكب المريخ

كوكب المشتري

كوكب زحل

كوكب أورانوس

كوكب نبتون

كوكب بلوتو

القمر

كواكب ومواضيع اخرى

مواضيع عامة في علم الفلك

النجوم

البلازما

الألكترونيات

خواص المادة

الطاقة البديلة

الطاقة الشمسية

مواضيع عامة في الطاقة البديلة

المد والجزر

فيزياء الجسيمات

الفيزياء والعلوم الأخرى

الفيزياء الكيميائية

الفيزياء الرياضية

الفيزياء الحيوية

الفيزياء العامة

مواضيع عامة في الفيزياء

تجارب فيزيائية

مصطلحات وتعاريف فيزيائية

وحدات القياس الفيزيائية

طرائف الفيزياء

مواضيع اخرى

علم الفيزياء : الفيزياء الكلاسيكية : الكهربائية والمغناطيسية : المغناطيسية :

Magnetic Flux

المؤلف:  E. R. Huggins

المصدر:  Physics 2000

الجزء والصفحة:  748

24-12-2020

1331

Magnetic Flux

In our discussion of velocity fields and electric fields, we used the concept of the flux of a field. For the velocity field, the flux Φv of water was the volume of water flowing per second past some perpendicular area A . For a uniform stream moving at a speed v, the flux was Φv = vA. For the electric field, the formula for flux was ΦE = EA.
In Figures (1 and 2), we have a magnetic field that "flows" through a wire loop. Following the same convention that we used for velocity and electric fields, we will define the magnetic flux ΦB as the strength of the field B times the perpendicular area A through which the field is flowing

.........(1)

Figure 1.

Figure 2: Here we have a large coil that lies completely outside the magnetic field. Thus there is no magnetic force on any of the electrons in the coil wire. Yet when we turn the magnet on or off, we get a reading in the volt meter.

In both figures (1) and (2), the flux ΦB through the wire loop is decreasing. In Figure (1), ΦB decreases because the perpendicular area A is decreasing as the loop and the magnet move apart. In Figure (2), the flux ΦB is decreasing because B is being shut off. The important observation is that whenever the flux Φthrough the loop decreases, whatever the reason for the change may be, we get a voltage reading V on the voltmeter.

EN

تصفح الموقع بالشكل العمودي