1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : المعادلات التفاضلية و التكاملية : معادلات تفاضلية :

Indicial Equation

المؤلف:  Morse, P. M. and Feshbach, H

المصدر:  Methods of Theoretical Physics, Part I. New York: McGraw-Hill

الجزء والصفحة:  pp. 532-534

13-6-2018

977

Indicial Equation

An indicial equation, also called a characteristic equation, is a recurrence equation obtained during application of the Frobenius method of solving a second-order ordinary differential equation. The indicial equation is obtained by noting that, by definition, the lowest order term x^k (that corresponding to n=0) must have a coefficient of zero.

1. If the two roots are equal, only one solution can be obtained.

2. If the two roots differ by a noninteger, two solutions can be obtained.

3. If the two roots differ by an integer, the larger will yield a solution. The smaller may or may not.

For an example of the construction of an indicial equation, see Bessel function of the first kind.

The following table gives the indicial equations for some common differential equations.

differential equation indicial equation
Bessel differential equation n(2m+n)a_n+a_(n-2)=0
Chebyshev differential equation (n+2)(n+1)a_(n+2)+(alpha^2-n^2)a_n=0
Hermite differential equation (n+1)(n+2)a_(n+2)+(lambda-2n)a_n=0
Jacobi differential equation [n(n+alpha+beta+1)-nu(nu+alpha+beta+1)]a_nu-2(nu+1)(nu+alpha+1)a_(nu+1)=0
Laguerre differential equation (n+1)(n+nu+1)a_(n+1)+(lambda-n)a_n=0
Legendre differential equation (n+1)(n+2)a_(n+2)+[-n(n+1)+l(l+1)]a_n=0

 

 


REFERENCES:

Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 532-534, 1953.

EN

تصفح الموقع بالشكل العمودي