1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : المعادلات التفاضلية و التكاملية : معادلات تفاضلية :

Gegenbauer Differential Equation

المؤلف:  Abramowitz, M. and Stegun, I. A

المصدر:  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover

الجزء والصفحة:  ...

12-6-2018

1821

Gegenbauer Differential Equation

The second-order ordinary differential equation

(1)

sometimes called the hyperspherical differential equation (Iyanaga and Kawada 1980, p. 1480; Zwillinger 1997, p. 123). The solution to this equation is

 y=(x^2-1)^(-mu/2)[C_1P_nu^mu(x)+C_2Q_nu^mu(x)],

(2)

where P_nu^mu(x) is an associated Legendre function of the first kind and Q_nu^mu(x) is an associated Legendre function of the second kind.

A number of other forms of this equation are sometimes also known as the ultraspherical or Gegenbauer differential equation, including

(3)

The general solutions to this equation are

 y=(x^2-1)^((1-2mu)/4)[C_1P_(-1/2+mu+nu)^(1/2-mu)(x)+C_2Q_(-1/2+mu+nu)^(1/2-mu)(x)].

(4)

If -1/2+mu+nu is an integer, then one of the solutions is known as a Gegenbauer polynomials C_n^((lambda))(x), also known as ultraspherical polynomials.

The form

(5)

is also given by Infeld and Hull (1951, pp. 21-68) and Zwillinger (1997, p. 122). It has the solution

 y=(x^2-1)^(-(2m+1)/4)[C_1P_(-1/2+sqrt((1+m)^2+lambda))^(1/2+m)(x)+C_2Q_(-1/2+sqrt((1+m)^2+lambda))^(1/2+m)(x)].

(6)

 


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.

Infeld, L. and Hull, T. E. "The Factorization Method." Rev. Mod. Phys. 23, 21-68, 1951.

Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, 1980.

Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 547-549, 1953.

Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 127, 1997.

EN

تصفح الموقع بالشكل العمودي