Greener batteries
10:46:56 2023-04-24 525

Our modern rechargeable batteries, such as lithium-ion batteries, are anything but sustainable. One alternative is organic batteries with redox-organic electrode materials (OEMs), which can be synthesized from natural "green" materials. In the journal Angewandte Chemie, a Chinese team has now introduced a new OEM for aqueous organic high-capacity batteries that can be easily and cheaply recycled.

Traditional inorganic electrode materials in commercial batteries involve a whole spectrum of problems: limited resources, toxic elements, environmental problems, partly unacceptable mining conditions, limited capacity, difficulties in recycling, and high costs. No sustainable batteries can be developed on a large scale based on these electrodes, though they are needed for an energy transition.

Organic batteries with OEMs are still at the very beginning of their long road toward practical application. A team led by Chengliang Wang at Huazhong University of Science and Technology has now taken a significant step in this direction. The goal is to use OEMs in batteries with aqueous electrolytes. These are "greener," more sustainable, and less expensive than the conventional organic electrolytes in lithium-ion batteries.

The team chose to use azobenzene, a material that can be produced inexpensively on a large scale and is insoluble in water while being highly soluble in organic solvents. Whereas most other functional groups can only transfer one electron, the azo group (-N=N-) in this molecule is able to reversibly transfer two electrons, which contributes to a high capacity. Comprehensive analyses demonstrated that, during the discharge process, the azobenzene is converted to hydroazobenzene after absorbing two of the electrons -- through the rapid, reversible binding of two protons (H+). Prototype coin cells and laminated pouch cells of various sizes with azobenzene OEMs and zinc counter-electrodes reached capacities on the scale of ampere hours, which were retained over 200 charge/discharge cycles.

In contrast to polymeric OEMs, the small azobenzene molecules can be inexpensively recycled with a simple extraction using commercial organic solvents. The electrode material is air stable in both its charged and discharged states and can be recycled in yields of over 90% in every state of charge. The recycled products could be directly reused as OEMs with no loss of capacity.

 

Reality Of Islam

A Mathematical Approach to the Quran

10:52:33   2024-02-16  

mediation

2:36:46   2023-06-04  

what Allah hates the most

5:1:47   2023-06-01  

allahs fort

11:41:7   2023-05-30  

striving for success

2:35:47   2023-06-04  

Imam Ali Describes the Holy Quran

5:0:38   2023-06-01  

livelihood

11:40:13   2023-05-30  

silence about wisdom

3:36:19   2023-05-29  

MOST VIEWS

Importance of Media

9:3:43   2018-11-05

Illuminations

people in need

4:25:57   2023-02-11

friendship

2:42:26   2023-02-02

the effect of words

5:58:12   2021-12-18

different roles

9:42:16   2022-10-19

a wisdom

8:4:21   2022-01-08

be creative

8:25:12   2022-03-09

strong personality

10:43:56   2022-06-22



IMmORTAL Words
LATEST Softgel Capsules Draw Concerns Over Toxic Shells. Here is What to Know This Breakthrough Sponge Could Change How the World Gets Clean Water Antarctica Just Lost a Greenland Worth of Ice — And That Not the Scariest Part Increase Your Learning Ability Interpretation of Sura Hud - Verses 87-89 Permanence and Victory Massive Review Finds No Safe Level of Processed Meat Consumption Not All Uranium Can Be Used in Weapons. Here is What Enrichment Means. Spider With No Venom Has a Deadly Trick to Poison Its Prey Pay Close Attention to Investigating Causes and Effects Interpretation of Sura Hud - Verses 84-86 Patience Against Optional Tragedies