المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر
المستغفرون بالاسحار
2024-11-01
المرابطة في انتظار الفرج
2024-11-01
النضوج الجنسي للماشية sexual maturity
2024-11-01
المخرجون من ديارهم في سبيل الله
2024-11-01
المختلعة كيف يكون خلعها ؟
2024-11-01
المحكم والمتشابه
2024-11-01


CHO Cells  
  
2771   01:10 صباحاً   date: 21-12-2015
Author : K. B. Konstantinov
Book or Source : Biotechnol. Bioeng. 52, 271–289
Page and Part :

 CHO Cells 

 

1. Origin

CHO cells were originated as a cell line by Theodore Puck in 1958 (1) from the Chinese hamster, Cricetulus griseus. CHO/Pro cells requiring proline for growth were subsequently derived by nutritional selection. The parental cells were treated with bromodeoxyuridine in proline-deficient medium and then exposed to the near-visible UV from a fluorescent light. This killed the growing cells, but not those that required proline. Proline-requiring clones were then grown up by feeding the surviving cells with proline-rich medium. CHO/Pro was subcloned by dilution cloning, and cell line CHO/Pro-K1 was isolated. The current designation of this cell line in common use is CHO-K1, and it still has a requirement for proline, which is present in Ham's F12, the medium usually recommended for its propagation. It is listed in the American Type Culture Collection (ATCC) catalogue as CCL-61 (Fig. 1).

Figure 1. Confluent culture of CHO-K1 cells. Phase contrast, Olympus CK microscope, 20× objective.

2. Properties

 CHO-K1 (Fig. 1) is a continuous cell line and near-diploid with 20 chromosomes (2C = 22). It has a very short doubling time of around 15 h, making it popular as a host for transfection and biotechnology. The plating efficiency is also very high, and can be 100% under optimal conditions, so these cells have always been popular for clonogenic survival studies of nutritional mutants and radiation survival. Chinese hamster cells originally became popular for genetic studies because of their relatively small number of readily distinguishable chromosomes, but the advent of chromosome banding techniques and chromosome painting by fluorescence in situ hybridization makes the distinction of individual chromosomes easier in many other species.

CHO-K1 cells, although transformed, still retain nutrient-dependent G1 cell-cycle blockade. Isoleucine deprivation blocks the cells in G1, and its restoration generates a synchronous population (2) .

3. Usage

 CHO-K1 cells have been used in cell-cycle control and signaling (3) and are used extensively in biotechnology (4). They are used frequently in DNA transfection (5) and virally mediated DNA transfer (6). They can be maintained in suspension culture to generate large numbers of cells or product. Using methotrexate-induced co-amplification with cotransfected dihydrofolate reductase, they have been used for production of interferon-g (7) and prothrombin-2 (8). They have been adapted to grow in serum-free medium (9). Together with V79 cells, another Chinese hamster cell line, they have been used extensively in genotoxicity studies (10).

References

1. T. T. Puck, S. J. Cieciura, and A. Robinson (1958) J. Exp. Med. 108, 945–956

2. K. D. Ley and R. A. Tobey (1970) J. Cell. Biol. 47, 453–459

3. G. Tortora, S. Pepe, C. Bianco, V. Damiano, A. Ruggiero, G. Baldassarre, C. Corbo, Y. S. Chochung, A. R. Bianco, and F. Ciardiello (1994) Intl. J. Cancer 59, 712–716

4. K. B. Konstantinov (1996) Biotechnol. Bioeng. 52, 271–289

5. S. Subramanian and F. Srienc (1996) J. Biotechnol. 49, 137–151

6. T. Schoneberg, V. Sandig, J. Wess, T. Gudermann, and G. Schultz (1997) J. Clin. Invest. 100 1547–1556,  .

7.V. Leelavatcharamas, A. N. Emery, and M. Al-Rubeai (1994) Cytotechnology 15, 65–71

8. G. Russo, A. Gast, E. J. Schlaeger, A. Angiolillo, and C. Pietropaolo (1997) Protein Express. Purif. 10, 214–225

9. M. J. Keen and N. T. Rapson (1995) Cytotechnology 17, 153–163

10. H. F. L. Mark, R. Naram, T. Pham, K. Shah, L. P. Cousens, C. Wiersch, E. Airall, M. Samy, K. Zolnierz, R. Mark, K. Santoro, L. Beauregard, and P. H. Lamarche (1994) Ann. Clin. Lab. Sci. 24, 387–395




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.