Read More
Date: 14-9-2019
![]()
Date: 22-5-2019
![]()
Date: 10-5-2018
![]() |
An approximation for the gamma function with
is given by
![]() |
(1) |
where is an arbitrary constant such that
,
![]() |
(2) |
where is a Pochhammer symbol and
![]() |
(3) |
and
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
with (Lanczos 1964; Luke 1969, p. 30).
satisfies
![]() |
(6) |
and if is a positive integer, then
satisfies the identity
![]() |
(7) |
(Luke 1969, p. 30).
A similar result is given by
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
where is a Pochhammer symbol,
is a factorial, and
![]() |
(11) |
The first few values of are
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
(OEIS A054379 and A054380; Whittaker and Watson 1990, p. 253). Note that Whittaker and Watson incorrectly give as 227/60.
Yet another related result gives
![]() |
(17) |
(Whittaker and Watson 1990, p. 261), where is a Hurwitz zeta function and
is a polygamma function.
REFERENCES:
Lanczos, C. J. Soc. Indust. Appl. Math. Ser. B: Numer. Anal. 1, 86-96, 1964.
Luke, Y. L. "An Expansion for ." §2.10.3 in The Special Functions and their Approximations, Vol. 1. New York: Academic Press, pp. 29-31, 1969.
Sloane, N. J. A. Sequences A054379 and A054379 in "The On-Line Encyclopedia of Integer Sequences."
Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.
|
|
لخفض ضغط الدم.. دراسة تحدد "تمارين مهمة"
|
|
|
|
|
طال انتظارها.. ميزة جديدة من "واتساب" تعزز الخصوصية
|
|
|
|
|
عوائل الشهداء: العتبة العباسية المقدسة سبّاقة في استذكار شهداء العراق عبر فعالياتها وأنشطتها المختلفة
|
|
|